3 resultados para The brain

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I wish to propose a quite speculative new version of the grandmother cell theory to explain how the brain, or parts of it, may work. In particular, I discuss how the visual system may learn to recognize 3D objects. The model would apply directly to the cortical cells involved in visual face recognition. I will also outline the relation of our theory to existing models of the cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as part of a basic type of neural circuitry that can learn to approximate multidimensional input-output mappings from sets of examples and that is expected to be replicated in different regions of the brain and across modalities. The main points of the theory are: -the brain uses modules for multivariate function approximation as basic components of several of its information processing subsystems. -these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b). -HyperBF networks can be implemented in terms of biologically plausible mechanisms and circuitry. The theory predicts a specific type of population coding that represents an extension of schemes such as look-up tables. I will conclude with some speculations about the trade-off between memory and computation and the evolution of intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.