2 resultados para TIME-MOTION
em Massachusetts Institute of Technology
Resumo:
We present psychophysical experiments that measure the accuracy of perceived 3D structure derived from relative image motion. The experiments are motivated by Ullman's incremental rigidity scheme, which builds up 3D structure incrementally over an extended time. Our main conclusions are: first, the human system derives an accurate model of the relative depths of moving points, even in the presence of noise; second, the accuracy of 3D structure improves with time, eventually reaching a plateau; and third, the 3D structure currently perceived depends on previous 3D models. Through computer simulations, we relate the psychophysical observations to the behavior of Ullman's model.
Resumo:
This thesis examines a complete design framework for a real-time, autonomous system with specialized VLSI hardware for computing 3-D camera motion. In the proposed architecture, the first step is to determine point correspondences between two images. Two processors, a CCD array edge detector and a mixed analog/digital binary block correlator, are proposed for this task. The report is divided into three parts. Part I covers the algorithmic analysis; part II describes the design and test of a 32$\time $32 CCD edge detector fabricated through MOSIS; and part III compares the design of the mixed analog/digital correlator to a fully digital implementation.