9 resultados para Summed probability functions

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given n noisy observations g; of the same quantity f, it is common use to give an estimate of f by minimizing the function Eni=1(gi-f)2. From a statistical point of view this corresponds to computing the Maximum likelihood estimate, under the assumption of Gaussian noise. However, it is well known that this choice leads to results that are very sensitive to the presence of outliers in the data. For this reason it has been proposed to minimize the functions of the form Eni=1V(gi-f), where V is a function that increases less rapidly than the square. Several choices for V have been proposed and successfully used to obtain "robust" estimates. In this paper we show that, for a class of functions V, using these robust estimators corresponds to assuming that data are corrupted by Gaussian noise whose variance fluctuates according to some given probability distribution, that uniquely determines the shape of V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the general problem of reconstructing a function, defined on a finite lattice from a set of incomplete, noisy and/or ambiguous observations. The goal of this work is to demonstrate the generality and practical value of a probabilistic (in particular, Bayesian) approach to this problem, particularly in the context of Computer Vision. In this approach, the prior knowledge about the solution is expressed in the form of a Gibbsian probability distribution on the space of all possible functions, so that the reconstruction task is formulated as an estimation problem. Our main contributions are the following: (1) We introduce the use of specific error criteria for the design of the optimal Bayesian estimators for several classes of problems, and propose a general (Monte Carlo) procedure for approximating them. This new approach leads to a substantial improvement over the existing schemes, both regarding the quality of the results (particularly for low signal to noise ratios) and the computational efficiency. (2) We apply the Bayesian appraoch to the solution of several problems, some of which are formulated and solved in these terms for the first time. Specifically, these applications are: teh reconstruction of piecewise constant surfaces from sparse and noisy observationsl; the reconstruction of depth from stereoscopic pairs of images and the formation of perceptual clusters. (3) For each one of these applications, we develop fast, deterministic algorithms that approximate the optimal estimators, and illustrate their performance on both synthetic and real data. (4) We propose a new method, based on the analysis of the residual process, for estimating the parameters of the probabilistic models directly from the noisy observations. This scheme leads to an algorithm, which has no free parameters, for the restoration of piecewise uniform images. (5) We analyze the implementation of the algorithms that we develop in non-conventional hardware, such as massively parallel digital machines, and analog and hybrid networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.