3 resultados para Sequential machine theory.

em Massachusetts Institute of Technology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataflow model of computation exposes and exploits parallelism in programs without requiring programmer annotation; however, instruction- level dataflow is too fine-grained to be efficient on general-purpose processors. A popular solution is to develop a "hybrid'' model of computation where regions of dataflow graphs are combined into sequential blocks of code. I have implemented such a system to allow the J-Machine to run Id programs, leaving exposed a high amount of parallelism --- such as among loop iterations. I describe this system and provide an analysis of its strengths and weaknesses and those of the J-Machine, along with ideas for improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn and presented to the learner. In this paper, we consider the possibility of a more active learner who is allowed to choose his/her own examples. Our investigations are carried out in a function approximation setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes. We provide a general formulation of the problem and show how it can be regarded as sequential optimal recovery. We demonstrate the application of this general formulation to two special cases of functions on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An extensive investigation of the sample complexity of approximating these functions is conducted yielding both theoretical and empirical results on test functions. Our theoretical results (stated insPAC-style), along with the simulations demonstrate the superiority of our active scheme over both passive learning as well as classical optimal recovery. The analysis of active function approximation is conducted in a worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay, 1992).