5 resultados para Selection criterion

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach towards shape description, based on prototype modification and generalized cylinders, has been developed and applied to the object domains pottery and polyhedra: (1) A program describes and identifies pottery from vase outlines entered as lists of points. The descriptions have been modeled after descriptions by archeologists, with the result that identifications made by the program are remarkably consisten with those of the archeologists. It has been possible to quantify their shape descriptors, which are everyday terms in our language applied to many sorts of objects besides pottery, so that the resulting descriptions seem very natural. (2) New parsing strategies for polyhedra overcome some limitations of previous work. A special feature is that the processes of parsing and identification are carried out simultaneously.