3 resultados para SOI (silicon-on-insulator)

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87° to the substrate normal at substrate temperatures of 250°C or 300°C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds created by deep reactive ion etching. In order to ensure successful demolding, the silicon molds are coated with a thin layer of C[subscript 4]F[subscript 8] plasma polymer to reduce the adhesion force. Peel force and demolding status are used to determine if delamination is successful. Response surface method is employed to provide insights on how changes in coil power, passivating time and gas flow conditions affect plasma polymerization of C[subscript 4]F[subscript 8].