7 resultados para SMOOTHING SPLINES

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interpretation and recognition of noisy contours, such as silhouettes, have proven to be difficult. One obstacle to the solution of these problems has been the lack of a robust representation for contours. The contour is represented by a set of pairwise tangent circular arcs. The advantage of such an approach is that mathematical properties such as orientation and curvature are explicityly represented. We introduce a smoothing criterion for the contour tht optimizes the tradeoff between the complexity of the contour and proximity of the data points. The complexity measure is the number of extrema of curvature present in the contour. The smoothing criterion leads us to a true scale-space for contours. We describe the computation of the contour representation as well as the computation of relevant properties of the contour. We consider the potential application of the representation, the smoothing paradigm, and the scale-space to contour interpretation and recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes a new representation for two-dimensional round regions called Local Rotational Symmetries. Local Rotational Symmetries are intended as a companion to Brady's Smoothed Local Symmetry Representation for elongated shapes. An algorithm for computing Local Rotational Symmetry representations at multiple scales of resolution has been implemented and results of this implementation are presented. These results suggest that Local Rotational Symmetries provide a more robustly computable and perceptually accurate description of round regions than previous proposed representations. In the course of developing this representation, it has been necessary to modify the way both Smoothed Local Symmetries and Local Rotational Symmetries are computed. First, grey-scale image smoothing proves to be better than boundary smoothing for creating representations at multiple scales of resolution, because it is more robust and it allows qualitative changes in representations between scales. Secondly, it is proposed that shape representations at different scales of resolution be explicitly related, so that information can be passed between scales and computation at each scale can be kept local. Such a model for multi-scale computation is desirable both to allow efficient computation and to accurately model human perceptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.