3 resultados para Rapid transit.
em Massachusetts Institute of Technology
Resumo:
The Transit network provides high-speed, low-latency, fault-tolerant interconnect for high-performance, multiprocessor computers. The basic connection scheme for Transit uses bidelta style, multistage networks to support up to 256 processors. Scaling to larger machines by simply extending the bidelta network topology will result in a uniform degradation of network latency between all processors. By employing a fat-tree network structure in larger systems, the network provides locality and universality properties which can help minimize the impact of scaling on network latency. This report details the topology and construction issues associated with integrating Transit routing technology into fat-tree interconnect topologies.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.