6 resultados para Program performance

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis introduces the Named-State Register File, a fine-grain, fully-associative register file. The NSF allows fast context switching between concurrent threads as well as efficient sequential program performance. The NSF holds more live data than conventional register files, and requires less spill and reload traffic to switch between contexts. This thesis demonstrates an implementation of the Named-State Register File and estimates the access time and chip area required for different organizations. Architectural simulations of large sequential and parallel applications show that the NSF can reduce execution time by 9% to 17% compared to alternative register files.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores ways to augment a model-based diagnostic program with a learning component, so that it speeds up as it solves problems. Several learning components are proposed, each exploiting a different kind of similarity between diagnostic examples. Through analysis and experiments, we explore the effect each learning component has on the performance of a model-based diagnostic program. We also analyze more abstractly the performance effects of Explanation-Based Generalization, a technology that is used in several of the proposed learning components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is concerned with the problem of achieving flexibility (additivity, modularity) and efficiency (performance, expertise) simultaneously in one AI program. It deals with the domain of elementary electronic circuit design. The proposed solution is to provide a deduction-driven problem solver with built-in-control-structure concepts. This problem solver and its knowledge base in the applicaitn areas of design and electronics are descrbed. The prgram embodying it is being used to explore the solutionof some modest problems in circuit design. It is concluded that shallow reasoning about problem-solver plans is necessary for flexibility, and can be implemented with reasonable efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caches are known to consume up to half of all system power in embedded processors. Co-optimizing performance and power of the cache subsystems is therefore an important step in the design of embedded systems, especially those employing application specific instruction processors. In this project, we propose an analytical cache model that succinctly captures the miss performance of an application over the entire cache parameter space. Unlike exhaustive trace driven simulation, our model requires that the program be simulated once so that a few key characteristics can be obtained. Using these application-dependent characteristics, the model can span the entire cache parameter space consisting of cache sizes, associativity and cache block sizes. In our unified model, we are able to cater for direct-mapped, set and fully associative instruction, data and unified caches. Validation against full trace-driven simulations shows that our model has a high degree of fidelity. Finally, we show how the model can be coupled with a power model for caches such that one can very quickly decide on pareto-optimal performance-power design points for rapid design space exploration.