8 resultados para Procedural memory

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Persistent Node is a redundant distributed mechanism for storing a key/value pair reliably in a geographically local network. In this paper, I develop a method of establishing Persistent Nodes in an amorphous matrix. I address issues of construction, usage, atomicity guarantees and reliability in the face of stopping failures. Applications include routing, congestion control, and data storage in gigascale networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the design and implementation of an integrated circuit and associated packaging to be used as the building block for the data routing network of a large scale shared memory multiprocessor system. A general purpose multiprocessor depends on high-bandwidth, low-latency communications between computing elements. This thesis describes the design and construction of RN1, a novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the basic building block for a scalable pipelined routing network with byte-wide data channels. A series of RN1 chips can be cascaded with no additional internal network components to form a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies up to 100Mhz using Hewlett-Packard's HP34 $1.2\\mu$ process. This aggressive performance goal demands that special attention be paid to optimization of the logic architecture and circuit design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If we are to understand how we can build machines capable of broad purpose learning and reasoning, we must first aim to build systems that can represent, acquire, and reason about the kinds of commonsense knowledge that we humans have about the world. This endeavor suggests steps such as identifying the kinds of knowledge people commonly have about the world, constructing suitable knowledge representations, and exploring the mechanisms that people use to make judgments about the everyday world. In this work, I contribute to these goals by proposing an architecture for a system that can learn commonsense knowledge about the properties and behavior of objects in the world. The architecture described here augments previous machine learning systems in four ways: (1) it relies on a seven dimensional notion of context, built from information recently given to the system, to learn and reason about objects' properties; (2) it has multiple methods that it can use to reason about objects, so that when one method fails, it can fall back on others; (3) it illustrates the usefulness of reasoning about objects by thinking about their similarity to other, better known objects, and by inferring properties of objects from the categories that they belong to; and (4) it represents an attempt to build an autonomous learner and reasoner, that sets its own goals for learning about the world and deduces new facts by reflecting on its acquired knowledge. This thesis describes this architecture, as well as a first implementation, that can learn from sentences such as ``A blue bird flew to the tree'' and ``The small bird flew to the cage'' that birds can fly. One of the main contributions of this work lies in suggesting a further set of salient ideas about how we can build broader purpose commonsense artificial learners and reasoners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The memory hierarchy is the main bottleneck in modern computer systems as the gap between the speed of the processor and the memory continues to grow larger. The situation in embedded systems is even worse. The memory hierarchy consumes a large amount of chip area and energy, which are precious resources in embedded systems. Moreover, embedded systems have multiple design objectives such as performance, energy consumption, and area, etc. Customizing the memory hierarchy for specific applications is a very important way to take full advantage of limited resources to maximize the performance. However, the traditional custom memory hierarchy design methodologies are phase-ordered. They separate the application optimization from the memory hierarchy architecture design, which tend to result in local-optimal solutions. In traditional Hardware-Software co-design methodologies, much of the work has focused on utilizing reconfigurable logic to partition the computation. However, utilizing reconfigurable logic to perform the memory hierarchy design is seldom addressed. In this paper, we propose a new framework for designing memory hierarchy for embedded systems. The framework will take advantage of the flexible reconfigurable logic to customize the memory hierarchy for specific applications. It combines the application optimization and memory hierarchy design together to obtain a global-optimal solution. Using the framework, we performed a case study to design a new software-controlled instruction memory that showed promising potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias annotations, our inference system will compute the amount of memory required by the methods to execute successfully as well as the amount of memory released when methods return. The obtained analysis results are useful for networked devices with limited computational resources as well as embedded software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memory errors are a common cause of incorrect software execution and security vulnerabilities. We have developed two new techniques that help software continue to execute successfully through memory errors: failure-oblivious computing and boundless memory blocks. The foundation of both techniques is a compiler that generates code that checks accesses via pointers to detect out of bounds accesses. Instead of terminating or throwing an exception, the generated code takes another action that keeps the program executing without memory corruption. Failure-oblivious code simply discards invalid writes and manufactures values to return for invalid reads, enabling the program to continue its normal execution path. Code that implements boundless memory blocks stores invalid writes away in a hash table to return as the values for corresponding out of bounds reads. he net effect is to (conceptually) give each allocated memory block unbounded size and to eliminate out of bounds accesses as a programming error. We have implemented both techniques and acquired several widely used open source servers (Apache, Sendmail, Pine, Mutt, and Midnight Commander).With standard compilers, all of these servers are vulnerable to buffer overflow attacks as documented at security tracking web sites. Both failure-oblivious computing and boundless memory blocks eliminate these security vulnerabilities (as well as other memory errors). Our results show that our compiler enables the servers to execute successfully through buffer overflow attacks to continue to correctly service user requests without security vulnerabilities.