3 resultados para Postmortem Human Brain
em Massachusetts Institute of Technology
Resumo:
The development of increasingly sophisticated and powerful computers in the last few decades has frequently stimulated comparisons between them and the human brain. Such comparisons will become more earnest as computers are applied more and more to tasks formerly associated with essentially human activities and capabilities. The expectation of a coming generation of "intelligent" computers and robots with sensory, motor and even "intellectual" skills comparable in quality to (and quantitatively surpassing) our own is becoming more widespread and is, I believe, leading to a new and potentially productive analytical science of "information processing". In no field has this new approach been so precisely formulated and so thoroughly exemplified as in the field of vision. As the dominant sensory modality of man, vision is one of the major keys to our mastery of the environment, to our understanding and control of the objects which surround us. If we wish to created robots capable of performing complex manipulative tasks in a changing environment, we must surely endow them with (among other things) adequate visual powers. How can we set about designing such flexible and adaptive robots? In designing them, can we make use of our rapidly growing knowledge of the human brain, and if so, how at the same time, can our experiences in designing artificial vision systems help us to understand how the brain analyzes visual information?
Resumo:
We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.
Resumo:
The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.