5 resultados para Pollen tube. Subcellular localization
em Massachusetts Institute of Technology
Resumo:
We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.
Resumo:
A method for localization and positioning in an indoor environment is presented. The method is based on representing the scene as a set of 2D views and predicting the appearances of novel views by linear combinations of the model views. The method is accurate under weak perspective projection. Analysis of this projection as well as experimental results demonstrate that in many cases it is sufficient to accurately describe the scene. When weak perspective approximation is invalid, an iterative solution to account for the perspective distortions can be employed. A simple algorithm for repositioning, the task of returning to a previously visited position defined by a single view, is derived from this method.
Resumo:
Software bugs are violated specifications. Debugging is the process that culminates in repairing a program so that it satisfies its specification. An important part of debugging is localization, whereby the smallest region of the program that manifests the bug is found. The Debugging Assistant (DEBUSSI) localizes bugs by reasoning about logical dependencies. DEBUSSI manipulates the assumptions that underlie a bug manifestation, eventually localizing the bug to one particular assumption. At the same time, DEBUSSI acquires specification information, thereby extending its understanding of the buggy program. The techniques used for debugging fully implemented code are also appropriate for validating partial designs.
Resumo:
Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.
Resumo:
This report investigates some techinques appropriate to representing the knowledge necessary for understanding a class of electronic machines -- radio receivers. A computational performance model - WATSON - is presented. WATSONs task is to isolate failures in radio receivers whose principles of operation have been appropriately described in his knowledge base. The thesis of the report is that hierarchically organized representational structures are essential to the understanding of complex mechanisms. Such structures lead not only to descriptions of machine operation at many levels of detail, but also offer a powerful means of organizing "specialist" knowledge for the repair of machines when they are broken.