29 resultados para Perverted Adder (Computer circuit)
em Massachusetts Institute of Technology
Resumo:
This report describes Processor Coupling, a mechanism for controlling multiple ALUs on a single integrated circuit to exploit both instruction-level and inter-thread parallelism. A compiler statically schedules individual threads to discover available intra-thread instruction-level parallelism. The runtime scheduling mechanism interleaves threads, exploiting inter-thread parallelism to maintain high ALU utilization. ALUs are assigned to threads on a cycle byscycle basis, and several threads can be active concurrently. Simulation results show that Processor Coupling performs well both on single threaded and multi-threaded applications. The experiments address the effects of memory latencies, function unit latencies, and communication bandwidth between function units.
Resumo:
This report is concerned with the problem of achieving flexibility (additivity, modularity) and efficiency (performance, expertise) simultaneously in one AI program. It deals with the domain of elementary electronic circuit design. The proposed solution is to provide a deduction-driven problem solver with built-in-control-structure concepts. This problem solver and its knowledge base in the applicaitn areas of design and electronics are descrbed. The prgram embodying it is being used to explore the solutionof some modest problems in circuit design. It is concluded that shallow reasoning about problem-solver plans is necessary for flexibility, and can be implemented with reasonable efficiency.
Resumo:
This thesis presents a theory of human-like reasoning in the general domain of designed physical systems, and in particular, electronic circuits. One aspect of the theory, causal analysis, describes how the behavior of individual components can be combined to explain the behavior of composite systems. Another aspect of the theory, teleological analysis, describes how the notion that the system has a purpose can be used to aid this causal analysis. The theory is implemented as a computer program, which, given a circuit topology, can construct by qualitative causal analysis a mechanism graph describing the functional topology of the system. This functional topology is then parsed by a grammar for common circuit functions. Ambiguities are introduced into the analysis by the approximate qualitative nature of the analysis. For example, there are often several possible mechanisms which might describe the circuit's function. These are disambiguated by teleological analysis. The requirement that each component be assigned an appropriate purpose in the functional topology imposes a severe constraint which eliminates all the ambiguities. Since both analyses are based on heuristics, the chosen mechanism is a rationalization of how the circuit functions, and does not guarantee that the circuit actually does function. This type of coarse understanding of circuits is useful for analysis, design and troubleshooting.
Resumo:
We first pose the following problem: to develop a program which takes line-drawings as input and constructs three-dimensional objects as output, such that the output objects are the same as the ones we see when we look at the input line-drawing. We then introduce the principle of minimum standard-deviation of angles (MSDA) and discuss a program based on MSDA. We present the results of testing this program with a variety of line- drawings and show that the program constitutes a solution to the stated problem over the range of line-drawings tested. Finally, we relate this work to its historical antecedents in the psychological and computer-vision literature.
Resumo:
We have simulated numerically an automated Maxwell's demon inspired by Smoluchowski's ideas of 1912. Two gas chambers of equal area are connected via an opening that is covered by a trapdoor. The trapdoor can open to the left but not to the right, and is intended to rectify naturally occurring variations in density between the two chambers. Our results confirm that though the trapdoor behaves as a rectifier when large density differences are imposed by external means, it can not extract useful work from the thermal motion of the molecules when left on its own.
Resumo:
The simulation of subsonic aeroacoustic problems such as the flow-generated sound of wind instruments is well suited for parallel computing on a cluster of non-dedicated workstations. Simulations are demonstrated which employ 20 non-dedicated Hewlett-Packard workstations (HP9000/715), and achieve comparable performance on this problem as a 64-node CM-5 dedicated supercomputer with vector units. The success of the present approach depends on the low communication requirements of the problem (low communication to computation ratio) which arise from the coarse-grain decomposition of the problem and the use of local-interaction methods. Many important problems may be suitable for this type of parallel computing including computer vision, circuit simulation, and other subsonic flow problems.
Resumo:
Recent developments in microfabrication and nanotechnology will enable the inexpensive manufacturing of massive numbers of tiny computing elements with sensors and actuators. New programming paradigms are required for obtaining organized and coherent behavior from the cooperation of large numbers of unreliable processing elements that are interconnected in unknown, irregular, and possibly time-varying ways. Amorphous computing is the study of developing and programming such ultrascale computing environments. This paper presents an approach to programming an amorphous computer by spontaneously organizing an unstructured collection of processing elements into cooperative groups and hierarchies. This paper introduces a structure called an AC Hierarchy, which logically organizes processors into groups at different levels of granularity. The AC hierarchy simplifies programming of an amorphous computer through new language abstractions, facilitates the design of efficient and robust algorithms, and simplifies the analysis of their performance. Several example applications are presented that greatly benefit from the AC hierarchy. This paper introduces three algorithms for constructing multiple levels of the hierarchy from an unstructured collection of processors.
Resumo:
Amorphous computing is the study of programming ultra-scale computing environments of smart sensors and actuators cite{white-paper}. The individual elements are identical, asynchronous, randomly placed, embedded and communicate locally via wireless broadcast. Aggregating the processors into groups is a useful paradigm for programming an amorphous computer because groups can be used for specialization, increased robustness, and efficient resource allocation. This paper presents a new algorithm, called the clubs algorithm, for efficiently aggregating processors into groups in an amorphous computer, in time proportional to the local density of processors. The clubs algorithm is well-suited to the unique characteristics of an amorphous computer. In addition, the algorithm derives two properties from the physical embedding of the amorphous computer: an upper bound on the number of groups formed and a constant upper bound on the density of groups. The clubs algorithm can also be extended to find the maximal independent set (MIS) and $Delta + 1$ vertex coloring in an amorphous computer in $O(log N)$ rounds, where $N$ is the total number of elements and $Delta$ is the maximum degree.
Resumo:
Over the next five years, computer games will find their way into a vast number of American homes, creating a unique educational opportunity: the development of "computer coaches" for the serious intellectual skills required by some of these games. From the player's perspective, the coach will provide advice regarding strategy and tactics for better play. But, from the perspective of the coach, the request for help is an opportunity to tutor basic mathematical, scientific or other kinds of knowledge that the game exercises.
Resumo:
Evolutionary algorithms are a common tool in engineering and in the study of natural evolution. Here we take their use in a new direction by showing how they can be made to implement a universal computer. We consider populations of individuals with genes whose values are the variables of interest. By allowing them to interact with one another in a specified environment with limited resources, we demonstrate the ability to construct any arbitrary logic circuit. We explore models based on the limits of small and large populations, and show examples of such a system in action, implementing a simple logic circuit.
Resumo:
We report a 75dB, 2.8mW, 100Hz-10kHz envelope detector in a 1.5mm 2.8V CMOS technology. The envelope detector performs input-dc-insensitive voltage-to-currentconverting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide- linear-range transconductor (WLR OTA) allows greater than 1.7Vpp input voltage swings. We show theoretically that this optimal performance is technology-independent for the given topology and may be improved only by spending more power. A novel circuit topology is used to perform 140nW peak detection with controllable attack and release time constants. The lower limits of envelope detection are determined by the more dominant of two effects: The first effect is caused by the inability of amplified high-frequency signals to exceed the deadzone created by exponential nonlinearities in the rectifier. The second effect is due to an output current caused by thermal noise rectification. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low power bionic implants for the deaf, hearing aids, and speech-recognition front ends. Extension of the envelope detector to higher- frequency applications is straightforward if power consumption is inc
Resumo:
Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.
Resumo:
This thesis describes two programs for generating tests for digital circuits that exploit several kinds of expert knowledge not used by previous approaches. First, many test generation problems can be solved efficiently using operation relations, a novel representation of circuit behavior that connects internal component operations with directly executable circuit operations. Operation relations can be computed efficiently by searching traces of simulated circuit behavior. Second, experts write test programs rather than test vectors because programs are more readable and compact. Test programs can be constructed automatically by merging program fragments using expert-supplied goal-refinement rules and domain-independent planning techniques.
Resumo:
Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.
Resumo:
A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).