12 resultados para Peres, Shimon

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain salient structures in images attract our immediate attention without requiring a systematic scan. We present a method for computing saliency by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map," a representation of the image emphasizing salient locations. The main properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations, and (iii) as a by-product of the computations, contours are smoothed and gaps are filled in.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a psychophysical investigation of the effects of object complexity and familiarity on the variation of recognition time and recognition accuracy over different views of novel 3D objects. Our findings indicate that with practice the response times for different views become more uniform and the initially orderly dependency of the response time on the distance to a "good" view disappears. One possible interpretation of our results is in terms of a tradeoff between memory needed for storing specific-view representations of objects and time spent in recognizing the objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual object recognition requires the matching of an image with a set of models stored in memory. In this paper we propose an approach to recognition in which a 3-D object is represented by the linear combination of 2-D images of the object. If M = {M1,...Mk} is the set of pictures representing a given object, and P is the 2-D image of an object to be recognized, then P is considered an instance of M if P = Eki=aiMi for some constants ai. We show that this approach handles correctly rigid 3-D transformations of objects with sharp as well as smooth boundaries, and can also handle non-rigid transformations. The paper is divided into two parts. In the first part we show that the variety of views depicting the same object under different transformations can often be expressed as the linear combinations of a small number of views. In the second part we suggest how this linear combinatino property may be used in the recognition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the progress made in computational vision, as represented by Marr's approach, in the last fifteen years. First, we briefly outline computational theories developed for low, middle and high-level vision. We then discuss in more detail solutions proposed to three representative problems in vision, each dealing with a different level of visual processing. Finally, we discuss modifications to the currently established computational paradigm that appear to be dictated by the recent developments in vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a series of psychophysical experiments that explore different aspects of the problem of object representation and recognition in human vision. Contrary to the paradigmatic view which holds that the representations are three-dimensional and object-centered, the results consistently support the notion of view-specific representations that include at most partial depth information. In simulated experiments that involved the same stimuli shown to the human subjects, computational models built around two-dimensional multiple-view representations replicated our main psychophysical results, including patterns of generalization errors and the time course of perceptual learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different approaches to visual object recognition can be divided into two general classes: model-based vs. non model-based schemes. In this paper we establish some limitation on the class of non model-based recognition schemes. We show that every function that is invariant to viewing position of all objects is the trivial (constant) function. It follows that every consistent recognition scheme for recognizing all 3-D objects must in general be model based. The result is extended to recognition schemes that are imperfect (allowed to make mistakes) or restricted to certain classes of objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a model for the general flow in the neocortex. The basic process, called "sequence-seeking," is a search for a sequence of mappings or transformations, linking source and target representations. The search is bi-directional, "bottom-up" as well as "top-down," and it explores in parallel a large numbe rof alternative sequences. This operation is implemented in a structure termed "counter streams," in which multiple sequences are explored along two separate, complementary pathways which seeking to meet. The first part of the paper discusses the general sequence-seeking scheme and a number of related processes, such as the learning of successful sequences, context effects, and the use of "express lines" and partial matches. The second part discusses biological implications of the model in terms of connections within and between cortical areas. The model is compared with existing data, and a number of new predictions are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many different spatial discrimination tasks, such as in determining the sign of the offset in a vernier stimulus, the human visual system exhibits hyperacuity-level performance by evaluating spatial relations with the precision of a fraction of a photoreceptor"s diameter. We propose that this impressive performance depends in part on a fast learning process that uses relatively few examples and occurs at an early processing stage in the visual pathway. We show that this hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of examples of a given task, a simple (HyperBF) network that attains the required performance level. We then verify with psychophysical experiments some of the key predictions of our conjecture. In particular, we show that fast timulus-specific learning indeed takes place in the human visual system and that this learning does not transfer between two slightly different hyperacuity tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.