1 resultado para Partition functions
em Massachusetts Institute of Technology
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (48)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (71)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (90)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (21)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (83)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Peer Publishing (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Institute of Public Health in Ireland, Ireland (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (12)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (7)
- National Center for Biotechnology Information - NCBI (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (162)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (5)
- Scielo Saúde Pública - SP (33)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad del Rosario, Colombia (5)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (97)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (3)
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.