1 resultado para Modulus of Smoothness
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (101)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CentAUR: Central Archive University of Reading - UK (59)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (29)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (8)
- Digital Commons at Florida International University (7)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Instituto Politécnico de Castelo Branco - Portugal (2)
- Instituto Politécnico do Porto, Portugal (18)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (41)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (5)
- Publishing Network for Geoscientific & Environmental Data (37)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (222)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Scielo Saúde Pública - SP (16)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (29)
- Universidade do Minho (26)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (22)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (13)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (6)
- University of Queensland eSpace - Australia (19)
- University of Washington (1)
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.