7 resultados para Memory Management (Computer science)
em Massachusetts Institute of Technology
Resumo:
We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias annotations, our inference system will compute the amount of memory required by the methods to execute successfully as well as the amount of memory released when methods return. The obtained analysis results are useful for networked devices with limited computational resources as well as embedded software.
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Resumo:
We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.
Resumo:
The memory hierarchy is the main bottleneck in modern computer systems as the gap between the speed of the processor and the memory continues to grow larger. The situation in embedded systems is even worse. The memory hierarchy consumes a large amount of chip area and energy, which are precious resources in embedded systems. Moreover, embedded systems have multiple design objectives such as performance, energy consumption, and area, etc. Customizing the memory hierarchy for specific applications is a very important way to take full advantage of limited resources to maximize the performance. However, the traditional custom memory hierarchy design methodologies are phase-ordered. They separate the application optimization from the memory hierarchy architecture design, which tend to result in local-optimal solutions. In traditional Hardware-Software co-design methodologies, much of the work has focused on utilizing reconfigurable logic to partition the computation. However, utilizing reconfigurable logic to perform the memory hierarchy design is seldom addressed. In this paper, we propose a new framework for designing memory hierarchy for embedded systems. The framework will take advantage of the flexible reconfigurable logic to customize the memory hierarchy for specific applications. It combines the application optimization and memory hierarchy design together to obtain a global-optimal solution. Using the framework, we performed a case study to design a new software-controlled instruction memory that showed promising potential.
Resumo:
Memory errors are a common cause of incorrect software execution and security vulnerabilities. We have developed two new techniques that help software continue to execute successfully through memory errors: failure-oblivious computing and boundless memory blocks. The foundation of both techniques is a compiler that generates code that checks accesses via pointers to detect out of bounds accesses. Instead of terminating or throwing an exception, the generated code takes another action that keeps the program executing without memory corruption. Failure-oblivious code simply discards invalid writes and manufactures values to return for invalid reads, enabling the program to continue its normal execution path. Code that implements boundless memory blocks stores invalid writes away in a hash table to return as the values for corresponding out of bounds reads. he net effect is to (conceptually) give each allocated memory block unbounded size and to eliminate out of bounds accesses as a programming error. We have implemented both techniques and acquired several widely used open source servers (Apache, Sendmail, Pine, Mutt, and Midnight Commander).With standard compilers, all of these servers are vulnerable to buffer overflow attacks as documented at security tracking web sites. Both failure-oblivious computing and boundless memory blocks eliminate these security vulnerabilities (as well as other memory errors). Our results show that our compiler enables the servers to execute successfully through buffer overflow attacks to continue to correctly service user requests without security vulnerabilities.
Resumo:
This report examines why women pursue careers in computer science and related fields far less frequently than men do. In 1990, only 13% of PhDs in computer science went to women, and only 7.8% of computer science professors were female. Causes include the different ways in which boys and girls are raised, the stereotypes of female engineers, subtle biases that females face, problems resulting from working in predominantly male environments, and sexual biases in language. A theme of the report is that women's underrepresentation is not primarily due to direct discrimination but to subconscious behavior that perpetuates the status quo.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.