13 resultados para Gaussian complexities
em Massachusetts Institute of Technology
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.
Resumo:
"Expectation-Maximization'' (EM) algorithm and gradient-based approaches for maximum likelihood learning of finite Gaussian mixtures. We show that the EM step in parameter space is obtained from the gradient via a projection matrix $P$, and we provide an explicit expression for the matrix. We then analyze the convergence of EM in terms of special properties of $P$ and provide new results analyzing the effect that $P$ has on the likelihood surface. Based on these mathematical results, we present a comparative discussion of the advantages and disadvantages of EM and other algorithms for the learning of Gaussian mixture models.
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
Interviews with more than 40 leaders in the Boston area health care industry have identified a range of broadly-felt critical problems. This document synthesizes these problems and places them in the context of work and family issues implicit in the organization of health care workplaces. It concludes with questions about possible ways to address such issues. The defining circumstance for the health care industry nationally as well as regionally at present is an extraordinary reorganization, not yet fully negotiated, in the provision and financing of health care. Hoped-for controls on increased costs of medical care – specifically the widespread replacement of indemnity insurance by market-based managed care and business models of operation--have fallen far short of their promise. Pressures to limit expenditures have produced dispiriting conditions for the entire healthcare workforce, from technicians and aides to nurses and physicians. Under such strains, relations between managers and workers providing care are uneasy, ranging from determined efforts to maintain respectful cooperation to adversarial negotiation. Taken together, the interviews identify five key issues affecting a broad cross-section of occupational groups, albeit in different ways: Staffing shortages of various kinds throughout the health care workforce create problems for managers and workers and also for the quality of patient care. Long work hours and inflexible schedules place pressure on virtually every part of the healthcare workforce, including physicians. Degraded and unsupportive working conditions, often the result of workplace "deskilling" and "speed up," undercut previous modes of clinical practice. Lack of opportunities for training and advancement exacerbate workforce problems in an industry where occupational categories and terms of work are in a constant state of flux. Professional and employee voices are insufficiently heard in conditions of rapid institutional reorganization and consolidation. Interviewees describe multiple impacts of these issues--on the operation of health care workplaces, on the well being of the health care workforce, and on the quality of patient care. Also apparent in the interviews, but not clearly named and defined, is the impact of these issues on the ability of workers to attend well to the needs of their families--and the reciprocal impact of workers' family tensions on workplace performance. In other words, the same things that affect patient care also affect families, and vice versa. Some workers describe feeling both guilty about raising their own family issues when their patients' needs are at stake, and resentful about the exploitation of these feelings by administrators making workplace policy. The different institutions making up the health care system have responded to their most pressing issues with a variety of specific stratagems but few that address the complexities connecting relations between work and family. The MIT Workplace Center proposes a collaborative exploration of next steps to probe these complications and to identify possible locations within the health care system for workplace experimentation with outcomes benefiting all parties.
Resumo:
Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.
Resumo:
Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with pure FIB milling, 10:1 for gas assistant etching, and 1:1 for the hole with size below 100 nm. A phenomenon of volume swell at the boundary of the hole was observed. The reason maybe due to the dose dependence of the effective sputter yield in low intensity Gaussian beam tail regions and redeposition. Different materials were used to investigate variation of the aspect ratio. The results show that for some special material, such as Ni-Be, the corresponding aspect ratio can reach 13.8:1 with Cl₂ assistant etching, but only 0.09:1 for Si(100) with single scan of the FIB.
Resumo:
We report on a new class of nonionic, photosensitive surfactants consisting of a polar di(ethylene oxide) head group attached to an alkyl spacer of between two and eight methylene groups, coupled through an ether linkage to an azobenzene moiety. Structural changes associated with the interconversion of the azobenzene group between its cis and trans forms as mediated by the wavelength of an irradiating light source cause changes in the surface tension and self-assembly properties. Differences in saturated surface tensions (surface tension at concentrations above the CMC) were as high as 14.4 mN/m under radiation of different wavelengths. The qualitative behavior of the surfactants changed as the spacer length changed, attributed to the different orientations adopted by the different surfactants depending on their isomerization states, as revealed by neutron reflection studies. The self-assembly of these photosensitive surfactants has been investigated by light scattering, small angle neutron scattering, and cryo-TEM under different illuminations. The significant change in the self-assembly in response to different illumination conditions was attributed to the sign change in Gaussian rigidity, which originated from the azobenzene photoisomerization.
Resumo:
This paper proposes three tests to determine whether a given nonlinear device noise model is in agreement with accepted thermodynamic principles. These tests are applied to several models. One conclusion is that every Gaussian noise model for any nonlinear device predicts thermodynamically impossible circuit behavior: these models should be abandoned. But the nonlinear shot-noise model predicts thermodynamically acceptable behavior under a constraint derived here. Further, this constraint specifies the current noise amplitude at each operating point from knowledge of the device v - i curve alone. For the Gaussian and shot-noise models, this paper shows how the thermodynamic requirements can be reduced to concise mathematical tests involving no approximatio