6 resultados para Exact computation
em Massachusetts Institute of Technology
Resumo:
A foundational model of concurrency is developed in this thesis. We examine issues in the design of parallel systems and show why the actor model is suitable for exploiting large-scale parallelism. Concurrency in actors is constrained only by the availability of hardware resources and by the logical dependence inherent in the computation. Unlike dataflow and functional programming, however, actors are dynamically reconfigurable and can model shared resources with changing local state. Concurrency is spawned in actors using asynchronous message-passing, pipelining, and the dynamic creation of actors. This thesis deals with some central issues in distributed computing. Specifically, problems of divergence and deadlock are addressed. For example, actors permit dynamic deadlock detection and removal. The problem of divergence is contained because independent transactions can execute concurrently and potentially infinite processes are nevertheless available for interaction.
Resumo:
We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.
Resumo:
This thesis takes an interdisciplinary approach to the study of color vision, focussing on the phenomenon of color constancy formulated as a computational problem. The primary contributions of the thesis are (1) the demonstration of a formal framework for lightness algorithms; (2) the derivation of a new lightness algorithm based on regularization theory; (3) the synthesis of an adaptive lightness algorithm using "learning" techniques; (4) the development of an image segmentation algorithm that uses luminance and color information to mark material boundaries; and (5) an experimental investigation into the cues that human observers use to judge the color of the illuminant. Other computational approaches to color are reviewed and some of their links to psychophysics and physiology are explored.
Resumo:
The dataflow model of computation exposes and exploits parallelism in programs without requiring programmer annotation; however, instruction- level dataflow is too fine-grained to be efficient on general-purpose processors. A popular solution is to develop a "hybrid'' model of computation where regions of dataflow graphs are combined into sequential blocks of code. I have implemented such a system to allow the J-Machine to run Id programs, leaving exposed a high amount of parallelism --- such as among loop iterations. I describe this system and provide an analysis of its strengths and weaknesses and those of the J-Machine, along with ideas for improvement.
Resumo:
Different theoretical models have tried to investigate the feasibility of recurrent neural mechanisms for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has been restricted so far to the case of purely linear networks. We present an exact analytical solution of the nonlinear dynamics of a class of direction selective recurrent neural models with threshold nonlinearity. Our mathematical analysis shows that such networks have form-stable stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. Our analysis shows also that the stability of such solutions can break down giving raise to a different class of solutions ("lurching activity waves") that are characterized by a specific spatio-temporal periodicity. These solutions cannot arise in models for direction selectivity with purely linear spatio-temporal filtering.
Resumo:
We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.