3 resultados para Eulerþs angles
em Massachusetts Institute of Technology
Resumo:
We first pose the following problem: to develop a program which takes line-drawings as input and constructs three-dimensional objects as output, such that the output objects are the same as the ones we see when we look at the input line-drawing. We then introduce the principle of minimum standard-deviation of angles (MSDA) and discuss a program based on MSDA. We present the results of testing this program with a variety of line- drawings and show that the program constitutes a solution to the stated problem over the range of line-drawings tested. Finally, we relate this work to its historical antecedents in the psychological and computer-vision literature.
Resumo:
We provide a theory of the three-dimensional interpretation of a class of line-drawings called p-images, which are interpreted by the human vision system as parallelepipeds ("boxes"). Despite their simplicity, p-images raise a number of interesting vision questions: *Why are p-images seen as three-dimensional objects? Why not just as flatimages? *What are the dimensions and pose of the perceived objects? *Why are some p-images interpreted as rectangular boxes, while others are seen as skewed, even though there is no obvious distinction between the images? *When p-images are rotated in three dimensions, why are the image-sequences perceived as distorting objects---even though structure-from-motion would predict that rigid objects would be seen? *Why are some three-dimensional parallelepipeds seen as radically different when viewed from different viewpoints? We show that these and related questions can be answered with the help of a single mathematical result and an associated perceptual principle. An interesting special case arises when there are right angles in the p-image. This case represents a singularity in the equations and is mystifying from the vision point of view. It would seem that (at least in this case) the vision system does not follow the ordinary rules of geometry but operates in accordance with other (and as yet unknown) principles.
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.