6 resultados para Embedded network
em Massachusetts Institute of Technology
Resumo:
As the number of processors in distributed-memory multiprocessors grows, efficiently supporting a shared-memory programming model becomes difficult. We have designed the Protocol for Hierarchical Directories (PHD) to allow shared-memory support for systems containing massive numbers of processors. PHD eliminates bandwidth problems by using a scalable network, decreases hot-spots by not relying on a single point to distribute blocks, and uses a scalable amount of space for its directories. PHD provides a shared-memory model by synthesizing a global shared memory from the local memories of processors. PHD supports sequentially consistent read, write, and test- and-set operations. This thesis also introduces a method of describing locality for hierarchical protocols and employs this method in the derivation of an abstract model of the protocol behavior. An embedded model, based on the work of Johnson[ISCA19], describes the protocol behavior when mapped to a k-ary n-cube. The thesis uses these two models to study the average height in the hierarchy that operations reach, the longest path messages travel, the number of messages that operations generate, the inter-transaction issue time, and the protocol overhead for different locality parameters, degrees of multithreading, and machine sizes. We determine that multithreading is only useful for approximately two to four threads; any additional interleaving does not decrease the overall latency. For small machines and high locality applications, this limitation is due mainly to the length of the running threads. For large machines with medium to low locality, this limitation is due mainly to the protocol overhead being too large. Our study using the embedded model shows that in situations where the run length between references to shared memory is at least an order of magnitude longer than the time to process a single state transition in the protocol, applications exhibit good performance. If separate controllers for processing protocol requests are included, the protocol scales to 32k processor machines as long as the application exhibits hierarchical locality: at least 22% of the global references must be able to be satisfied locally; at most 35% of the global references are allowed to reach the top level of the hierarchy.
Resumo:
The memory hierarchy is the main bottleneck in modern computer systems as the gap between the speed of the processor and the memory continues to grow larger. The situation in embedded systems is even worse. The memory hierarchy consumes a large amount of chip area and energy, which are precious resources in embedded systems. Moreover, embedded systems have multiple design objectives such as performance, energy consumption, and area, etc. Customizing the memory hierarchy for specific applications is a very important way to take full advantage of limited resources to maximize the performance. However, the traditional custom memory hierarchy design methodologies are phase-ordered. They separate the application optimization from the memory hierarchy architecture design, which tend to result in local-optimal solutions. In traditional Hardware-Software co-design methodologies, much of the work has focused on utilizing reconfigurable logic to partition the computation. However, utilizing reconfigurable logic to perform the memory hierarchy design is seldom addressed. In this paper, we propose a new framework for designing memory hierarchy for embedded systems. The framework will take advantage of the flexible reconfigurable logic to customize the memory hierarchy for specific applications. It combines the application optimization and memory hierarchy design together to obtain a global-optimal solution. Using the framework, we performed a case study to design a new software-controlled instruction memory that showed promising potential.
Resumo:
Most logistics network design models assume exogenous customer demand that is independent of the service time or level. This paper examines the benefits of segmenting demand according to lead-time sensitivity of customers. To capture lead-time sensitivity in the network design model, we use a facility grouping method to ensure that the different demand classes are satisfied on time. In addition, we perform a series of computational experiments to develop a set of managerial insights for the network design decision making process.
Resumo:
This article studies the static pricing problem of a network service provider who has a fixed capacity and faces different types of customers (classes). Each type of customers can have its own capacity constraint but it is assumed that all classes have the same resource requirement. The provider must decide a static price for each class. The customer types are characterized by their arrival process, with a price-dependant arrival rate, and the random time they remain in the system. Many real-life situations could fit in this framework, for example an Internet provider or a call center, but originally this problem was thought for a company that sells phone-cards and needs to set the price-per-minute for each destination. Our goal is to characterize the optimal static prices in order to maximize the provider's revenue. We note that the model here presented, with some slight modifications and additional assumptions can be used in those cases when the objective is to maximize social welfare.
Resumo:
We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.