6 resultados para DTN,Opportunistic Routing,Contact Graph Routing,Opportunistic Contact Graph Routing,ION
em Massachusetts Institute of Technology
Resumo:
This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.
Resumo:
As the size of digital systems increases, the mean time between single component failures diminishes. To avoid component related failures, large computers must be fault-tolerant. In this paper, we focus on methods for achieving a high degree of fault-tolerance in multistage routing networks. We describe a multipath scheme for providing end-to-end fault-tolerance on large networks. The scheme improves routing performance while keeping network latency low. We also describe the novel routing component, RN1, which implements this scheme, showing how it can be the basic building block for fault-tolerant multistage routing networks.
Resumo:
This thesis describes the design and implementation of an integrated circuit and associated packaging to be used as the building block for the data routing network of a large scale shared memory multiprocessor system. A general purpose multiprocessor depends on high-bandwidth, low-latency communications between computing elements. This thesis describes the design and construction of RN1, a novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the basic building block for a scalable pipelined routing network with byte-wide data channels. A series of RN1 chips can be cascaded with no additional internal network components to form a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies up to 100Mhz using Hewlett-Packard's HP34 $1.2\\mu$ process. This aggressive performance goal demands that special attention be paid to optimization of the logic architecture and circuit design.
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.
Resumo:
The Transit network provides high-speed, low-latency, fault-tolerant interconnect for high-performance, multiprocessor computers. The basic connection scheme for Transit uses bidelta style, multistage networks to support up to 256 processors. Scaling to larger machines by simply extending the bidelta network topology will result in a uniform degradation of network latency between all processors. By employing a fat-tree network structure in larger systems, the network provides locality and universality properties which can help minimize the impact of scaling on network latency. This report details the topology and construction issues associated with integrating Transit routing technology into fat-tree interconnect topologies.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.