3 resultados para Contributors

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This white paper reports emerging findings at the end of Phase I of the Lean Aircraft Initiative in the Policy focus group area. Specifically, it provides details about research on program instability. Its objective is to discuss high-level findings detailing: 1) the relative contribution of different factors to a program’s overall instability; 2) the cost impact of program instability on acquisition programs; and 3) some strategies recommended by program managers for overcoming and/or mitigating the negative effects of program instability on their programs. Because this report comes as this research is underway, this is not meant to be a definitive document on the subject. Rather, is it anticipated that this research may potentially produce a number of reports on program instability-related topics. The government managers of military acquisition programs rated annual budget or production rate changes, changes in requirements, and technical difficulties as the three top contributors, respectively, to program instability. When asked to partition actual variance in their program’s planned cost and schedule to each of these factors, it was found that the combined effects of unplanned budget and requirement changes accounted for 5.2% annual cost growth and 20% total program schedule slip. At a rate of approximately 5% annual cost growth from these factors, it is easy to see that even conservative estimates of the cost benefits to be gained from acquisition reforms and process improvements can quickly be eclipsed by the added cost associated with program instability. Program management practices involving the integration of stakeholders from throughout the value chain into the decision making process were rated the most effective at avoiding program instability. The use of advanced information technologies was rated the most effective at mitigating the negative impact of program instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This white paper reports emerging findings at the end of Phase I of the Lean Aircraft Initiative in the Policy focus group area. Specifically, it provides details about research on program instability. Its objective is to discuss high-level findings detailing: 1) the relative contribution of different factors to a program’s overall instability; 2) the cost impact of program instability on acquisition programs; and 3) some strategies recommended by program managers for overcoming and/or mitigating the negative effects of program instability on their programs. Because this report comes as this research is underway, this is not meant to be a definitive document on the subject. Rather, is it anticipated that this research may potentially produce a number of reports on program instability-related topics. The government managers of military acquisition programs rated annual budget or production rate changes, changes in requirements, and technical difficulties as the three top contributors, respectively, to program instability. When asked to partition actual variance in their program’s planned cost and schedule to each of these factors, it was found that the combined effects of unplanned budget and requirement changes accounted for 5.2% annual cost growth and 20% total program schedule slip. At a rate of approximately 5% annual cost growth from these factors, it is easy to see that even conservative estimates of the cost benefits to be gained from acquisition reforms and process improvements can quickly be eclipsed by the added cost associated with program instability. Program management practices involving the integration of stakeholders from throughout the value chain into the decision making process were rated the most effective at avoiding program instability. The use of advanced information technologies was rated the most effective at mitigating the negative impact of program instability.