14 resultados para Computer Experiments

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report examines why women pursue careers in computer science and related fields far less frequently than men do. In 1990, only 13% of PhDs in computer science went to women, and only 7.8% of computer science professors were female. Causes include the different ways in which boys and girls are raised, the stereotypes of female engineers, subtle biases that females face, problems resulting from working in predominantly male environments, and sexual biases in language. A theme of the report is that women's underrepresentation is not primarily due to direct discrimination but to subconscious behavior that perpetuates the status quo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for the visual analysis of objects by computer. It is particularly well suited for opaque objects with smoothly curved surfaces. The method extracts information about the object's surface properties, including measures of its specularity, texture, and regularity. It also aids in determining the object's shape. The application of this method to a simple recognition task ??e recognition of fruit ?? discussed. The results on a more complex smoothly curved object, a human face, are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most psychophysical studies of object recognition have focussed on the recognition and representation of individual objects subjects had previously explicitely been trained on. Correspondingly, modeling studies have often employed a 'grandmother'-type representation where the objects to be recognized were represented by individual units. However, objects in the natural world are commonly members of a class containing a number of visually similar objects, such as faces, for which physiology studies have provided support for a representation based on a sparse population code, which permits generalization from the learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and modeling studies intended to investigate object recognition in natural ('continuous') object classes. In two experiments, subjects were trained to perform subordinate level discrimination in a continuous object class - images of computer-rendered cars - created using a 3D morphing system. By comparing the recognition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific training and infer properties of the object class-specific representation learned as a result of training. We then compared the experimental findings to simulations, building on our recently presented HMAX model of object recognition in cortex, to investigate the computational properties of a population-based object class representation as outlined above. We find experimental evidence, supported by modeling results, that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-sentation with lower shape discriminability but possibly greater viewpoint invariance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.