2 resultados para Clustering algorithm
em Massachusetts Institute of Technology
Resumo:
This thesis describes a system that synthesizes regularity exposing attributes from large protein databases. After processing primary and secondary structure data, this system discovers an amino acid representation that captures what are thought to be the three most important amino acid characteristics (size, charge, and hydrophobicity) for tertiary structure prediction. A neural network trained using this 16 bit representation achieves a performance accuracy on the secondary structure prediction problem that is comparable to the one achieved by a neural network trained using the standard 24 bit amino acid representation. In addition, the thesis describes bounds on secondary structure prediction accuracy, derived using an optimal learning algorithm and the probably approximately correct (PAC) model.
Resumo:
"Expectation-Maximization'' (EM) algorithm and gradient-based approaches for maximum likelihood learning of finite Gaussian mixtures. We show that the EM step in parameter space is obtained from the gradient via a projection matrix $P$, and we provide an explicit expression for the matrix. We then analyze the convergence of EM in terms of special properties of $P$ and provide new results analyzing the effect that $P$ has on the likelihood surface. Based on these mathematical results, we present a comparative discussion of the advantages and disadvantages of EM and other algorithms for the learning of Gaussian mixture models.