8 resultados para Bitrate overhead

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic optimization has several key advantages. This includes the ability to work on binary code in the absence of sources and to perform optimization across module boundaries. However, it has a significant disadvantage viz-a-viz traditional static optimization: it has a significant runtime overhead. There can be performance gain only if the overhead can be amortized. In this paper, we will quantitatively analyze the runtime overhead introduced by a dynamic optimizer, DynamoRIO. We found that the major overhead does not come from the optimizer's operation. Instead, it comes from the extra code in the code cache added by DynamoRIO. After a detailed analysis, we will propose a method of trace construction that ameliorate the overhead introduced by the dynamic optimizer, thereby reducing the runtime overhead of DynamoRIO. We believe that the result of the study as well as the proposed solution is applicable to other scenarios such as dynamic code translation and managed execution that utilizes a framework similar to that of dynamic optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many current recognition systems use constrained search to locate objects in cluttered environments. Previous formal analysis has shown that the expected amount of search is quadratic in the number of model and data features, if all the data is known to come from a sinlge object, but is exponential when spurious data is included. If one can group the data into subsets likely to have come from a single object, then terminating the search once a "good enough" interpretation is found reduces the expected search to cubic. Without successful grouping, terminated search is still exponential. These results apply to finding instances of a known object in the data. In this paper, we turn to the problem of selecting models from a library, and examine the combinatorics of determining that a candidate object is not present in the data. We show that the expected search is again exponential, implying that naﶥ approaches to indexing are likely to carry an expensive overhead, since an exponential amount of work is needed to week out each of the incorrect models. The analytic results are shown to be in agreement with empirical data for cluttered object recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive monitoring of large sites typically requires coordination between multiple cameras, which in turn requires methods for automatically relating events between distributed cameras. This paper tackles the problem of self-calibration of multiple cameras which are very far apart, using feature correspondences to determine the camera geometry. The key problem is finding such correspondences. Since the camera geometry and photometric characteristics vary considerably between images, one cannot use brightness and/or proximity constraints. Instead we apply planar geometric constraints to moving objects in the scene in order to align the scene"s ground plane across multiple views. We do not assume synchronized cameras, and we show that enforcing geometric constraints enables us to align the tracking data in time. Once we have recovered the homography which aligns the planar structure in the scene, we can compute from the homography matrix the 3D position of the plane and the relative camera positions. This in turn enables us to recover a homography matrix which maps the images to an overhead view. We demonstrate this technique in two settings: a controlled lab setting where we test the effects of errors in internal camera calibration, and an uncontrolled, outdoor setting in which the full procedure is applied to external camera calibration and ground plane recovery. In spite of noise in the internal camera parameters and image data, the system successfully recovers both planar structure and relative camera positions in both settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TEMPEST is a full-screen text editor that incorporates a structural paradigm in addition to the more traditional textual paradigm provided by most editors. While the textual paradigm treats the text as a sequence of characters, the structural paradigm treats it as a collection of named blocks which the user can define, group, and manipulate. Blocks can be defined to correspond to the structural features of he text, thereby providing more meaningful objects to operate on than characters of lines. The structural representation of the text is kept in the background, giving TEMPEST the appearance of a typical text editor. The structural and textual interfaces coexist equally, however, so one can always operate on the text from wither point of view. TEMPEST's representation scheme provides no semantic understanding of structure. This approach sacrifices depth, but affords a broad range of applicability and requires very little computational overhead. A prototype has been implemented to illustrate the feasibility and potential areas of application of the central ideas. It was developed and runs on an IBM Personal Computer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the number of processors in distributed-memory multiprocessors grows, efficiently supporting a shared-memory programming model becomes difficult. We have designed the Protocol for Hierarchical Directories (PHD) to allow shared-memory support for systems containing massive numbers of processors. PHD eliminates bandwidth problems by using a scalable network, decreases hot-spots by not relying on a single point to distribute blocks, and uses a scalable amount of space for its directories. PHD provides a shared-memory model by synthesizing a global shared memory from the local memories of processors. PHD supports sequentially consistent read, write, and test- and-set operations. This thesis also introduces a method of describing locality for hierarchical protocols and employs this method in the derivation of an abstract model of the protocol behavior. An embedded model, based on the work of Johnson[ISCA19], describes the protocol behavior when mapped to a k-ary n-cube. The thesis uses these two models to study the average height in the hierarchy that operations reach, the longest path messages travel, the number of messages that operations generate, the inter-transaction issue time, and the protocol overhead for different locality parameters, degrees of multithreading, and machine sizes. We determine that multithreading is only useful for approximately two to four threads; any additional interleaving does not decrease the overall latency. For small machines and high locality applications, this limitation is due mainly to the length of the running threads. For large machines with medium to low locality, this limitation is due mainly to the protocol overhead being too large. Our study using the embedded model shows that in situations where the run length between references to shared memory is at least an order of magnitude longer than the time to process a single state transition in the protocol, applications exhibit good performance. If separate controllers for processing protocol requests are included, the protocol scales to 32k processor machines as long as the application exhibits hierarchical locality: at least 22% of the global references must be able to be satisfied locally; at most 35% of the global references are allowed to reach the top level of the hierarchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.