1 resultado para Bayesian p-values
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (5)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (46)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (85)
- Boston University Digital Common (3)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (50)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (6)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (27)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (12)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (30)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (17)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (63)
- Queensland University of Technology - ePrints Archive (89)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (238)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (4)
- University of Washington (2)
Resumo:
A common objective in learning a model from data is to recover its network structure, while the model parameters are of minor interest. For example, we may wish to recover regulatory networks from high-throughput data sources. In this paper we examine how Bayesian regularization using a Dirichlet prior over the model parameters affects the learned model structure in a domain with discrete variables. Surprisingly, a weak prior in the sense of smaller equivalent sample size leads to a strong regularization of the model structure (sparse graph) given a sufficiently large data set. In particular, the empty graph is obtained in the limit of a vanishing strength of prior belief. This is diametrically opposite to what one may expect in this limit, namely the complete graph from an (unregularized) maximum likelihood estimate. Since the prior affects the parameters as expected, the prior strength balances a "trade-off" between regularizing the parameters or the structure of the model. We demonstrate the benefits of optimizing this trade-off in the sense of predictive accuracy.