5 resultados para Associative algebras

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Message-Driven Processor is a node of a large-scale multiprocessor being developed by the Concurrent VLSI Architecture Group. It is intended to support fine-grained, message passing, parallel computation. It contains several novel architectural features, such as a low-latency network interface, extensive type-checking hardware, and on-chip memory that can be used as an associative lookup table. This document is a programmer's guide to the MDP. It describes the processor's register architecture, instruction set, and the data types supported by the processor. It also details the MDP's message sending and exception handling facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis introduces the Named-State Register File, a fine-grain, fully-associative register file. The NSF allows fast context switching between concurrent threads as well as efficient sequential program performance. The NSF holds more live data than conventional register files, and requires less spill and reload traffic to switch between contexts. This thesis demonstrates an implementation of the Named-State Register File and estimates the access time and chip area required for different organizations. Architectural simulations of large sequential and parallel applications show that the NSF can reduce execution time by 9% to 17% compared to alternative register files.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most computational models of neurons assume that their electrical characteristics are of paramount importance. However, all long-term changes in synaptic efficacy, as well as many short-term effects, are mediated by chemical mechanisms. This technical report explores the interaction between electrical and chemical mechanisms in neural learning and development. Two neural systems that exemplify this interaction are described and modelled. The first is the mechanisms underlying habituation, sensitization, and associative learning in the gill withdrawal reflex circuit in Aplysia, a marine snail. The second is the formation of retinotopic projections in the early visual pathway during embryonic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caches are known to consume up to half of all system power in embedded processors. Co-optimizing performance and power of the cache subsystems is therefore an important step in the design of embedded systems, especially those employing application specific instruction processors. In this project, we propose an analytical cache model that succinctly captures the miss performance of an application over the entire cache parameter space. Unlike exhaustive trace driven simulation, our model requires that the program be simulated once so that a few key characteristics can be obtained. Using these application-dependent characteristics, the model can span the entire cache parameter space consisting of cache sizes, associativity and cache block sizes. In our unified model, we are able to cater for direct-mapped, set and fully associative instruction, data and unified caches. Validation against full trace-driven simulations shows that our model has a high degree of fidelity. Finally, we show how the model can be coupled with a power model for caches such that one can very quickly decide on pareto-optimal performance-power design points for rapid design space exploration.