74 resultados para Apolipoprotéine AI
em Massachusetts Institute of Technology
Resumo:
This year, as the finale to the Artificial Intelligence Laboratory's annual Winter Olympics, the Lab staged an AI Fair ??night devoted to displaying the wide variety of talents and interests within the laboratory. The Fair provided an outlet for creativity and fun in a carnival-like atmosphere. Students organized events from robot boat races to face-recognition vision contests. Research groups came together to make posters and booths explaining their work. The robots rolled down out of the labs, networks were turned over to aerial combat computer games and walls were decorated with posters of zany ideas for the future. Everyone pitched in, and this photograph album is a pictorial account of the fun that night at the AI Fair.
Resumo:
Visual object recognition requires the matching of an image with a set of models stored in memory. In this paper we propose an approach to recognition in which a 3-D object is represented by the linear combination of 2-D images of the object. If M = {M1,...Mk} is the set of pictures representing a given object, and P is the 2-D image of an object to be recognized, then P is considered an instance of M if P = Eki=aiMi for some constants ai. We show that this approach handles correctly rigid 3-D transformations of objects with sharp as well as smooth boundaries, and can also handle non-rigid transformations. The paper is divided into two parts. In the first part we show that the variety of views depicting the same object under different transformations can often be expressed as the linear combinations of a small number of views. In the second part we suggest how this linear combinatino property may be used in the recognition process.
Resumo:
The 1989 AI Lab Winter Olympics will take a slightly different twist from previous Olympiads. Although there will still be a dozen or so athletic competitions, the annual talent show finale will now be a display not of human talent, but of robot talent. Spurred on by the question, "Why aren't there more robots running around the AI Lab?", Olympic Robot Building is an attempt to teach everyone how to build a robot and get them started. Robot kits will be given out the last week of classes before the Christmas break and teams have until the Robot Talent Show, January 27th, to build a machine that intelligently connects perception to action. There is no constraint on what can be built; participants are free to pick their own problems and solution implementations. As Olympic Robot Building is purposefully a talent show, there is no particular obstacle course to be traversed or specific feat to be demonstrated. The hope is that this format will promote creativity, freedom and imagination. This manual provides a guide to overcoming all the practical problems in building things. What follows are tutorials on the components supplied in the kits: a microprocessor circuit "brain", a variety of sensors and motors, a mechanical building block system, a complete software development environment, some example robots and a few tips on debugging and prototyping. Parts given out in the kits can be used, ignored or supplemented, as the kits are designed primarily to overcome the intertia of getting started. If all goes well, then come February, there should be all kinds of new members running around the AI Lab!
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols?
Resumo:
Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.
Resumo:
This paper describes a representation of the dynamics of human walking action for the purpose of person identification and classification by gait appearance. Our gait representation is based on simple features such as moments extracted from video silhouettes of human walking motion. We claim that our gait dynamics representation is rich enough for the task of recognition and classification. The use of our feature representation is demonstrated in the task of person recognition from video sequences of orthogonal views of people walking. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times, and under varying lighting environments. In addition, preliminary results are shown on gender classification using our gait dynamics features.
Resumo:
Visibility constraints can aid the segmentation of foreground objects observed with multiple range images. In our approach, points are defined as foreground if they can be determined to occlude some {em empty space} in the scene. We present an efficient algorithm to estimate foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we show how visibility constraints from other views can generate virtual background values at points with no valid depth in the primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments.
Resumo:
We present a unifying framework in which "object-independent" modes of variation are learned from continuous-time data such as video sequences. These modes of variation can be used as "generators" to produce a manifold of images of a new object from a single example of that object. We develop the framework in the context of a well-known example: analyzing the modes of spatial deformations of a scene under camera movement. Our method learns a close approximation to the standard affine deformations that are expected from the geometry of the situation, and does so in a completely unsupervised (i.e. ignorant of the geometry of the situation) fashion. We stress that it is learning a "parameterization", not just the parameter values, of the data. We then demonstrate how we have used the same framework to derive a novel data-driven model of joint color change in images due to common lighting variations. The model is superior to previous models of color change in describing non-linear color changes due to lighting.
Resumo:
This paper introduces Denotational Proof Languages (DPLs). DPLs are languages for presenting, discovering, and checking formal proofs. In particular, in this paper we discus type-alpha DPLs---a simple class of DPLs for which termination is guaranteed and proof checking can be performed in time linear in the size of the proof. Type-alpha DPLs allow for lucid proof presentation and for efficient proof checking, but not for proof search. Type-omega DPLs allow for search as well as simple presentation and checking, but termination is no longer guaranteed and proof checking may diverge. We do not study type-omega DPLs here. We start by listing some common characteristics of DPLs. We then illustrate with a particularly simple example: a toy type-alpha DPL called PAR, for deducing parities. We present the abstract syntax of PAR, followed by two different kinds of formal semantics: evaluation and denotational. We then relate the two semantics and show how proof checking becomes tantamount to evaluation. We proceed to develop the proof theory of PAR, formulating and studying certain key notions such as observational equivalence that pervade all DPLs. We then present NDL, a type-alpha DPL for classical zero-order natural deduction. Our presentation of NDL mirrors that of PAR, showing how every basic concept that was introduced in PAR resurfaces in NDL. We present sample proofs of several well-known tautologies of propositional logic that demonstrate our thesis that DPL proofs are readable, writable, and concise. Next we contrast DPLs to typed logics based on the Curry-Howard isomorphism, and discuss the distinction between pure and augmented DPLs. Finally we consider the issue of implementing DPLs, presenting an implementation of PAR in SML and one in Athena, and end with some concluding remarks.
Resumo:
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
Resumo:
Under normal viewing conditions, humans find it easy to distinguish between objects made out of different materials such as plastic, metal, or paper. Untextured materials such as these have different surface reflectance properties, including lightness and gloss. With single isolated images and unknown illumination conditions, the task of estimating surface reflectance is highly underconstrained, because many combinations of reflection and illumination are consistent with a given image. In order to work out how humans estimate surface reflectance properties, we asked subjects to match the appearance of isolated spheres taken out of their original contexts. We found that subjects were able to perform the task accurately and reliably without contextual information to specify the illumination. The spheres were rendered under a variety of artificial illuminations, such as a single point light source, and a number of photographically-captured real-world illuminations from both indoor and outdoor scenes. Subjects performed more accurately for stimuli viewed under real-world patterns of illumination than under artificial illuminations, suggesting that subjects use stored assumptions about the regularities of real-world illuminations to solve the ill-posed problem.
Resumo:
This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.
Resumo:
An increasing number of parameter estimation tasks involve the use of at least two information sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em) used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide a more controlled solution to this problem through differential equations that govern the evolution of locally optimal solutions (fixed points) as a function of the source weighting. This approach permits us to explicitly identify any critical (bifurcation) points leading to choices unsupported by the available complete data. The approach readily applies to any graphical model in O(n^3) time where n is the number of parameters. We use the naive Bayes model to illustrate these ideas and demonstrate the effectiveness of our approach in the context of text classification problems.
Resumo:
This paper presents an algorithm for simplifying NDL deductions. An array of simplifying transformations are rigorously defined. They are shown to be terminating, and to respect the formal semantis of the language. We also show that the transformations never increase the size or complexity of a deduction---in the worst case, they produce deductions of the same size and complexity as the original. We present several examples of proofs containing various types of "detours", and explain how our procedure eliminates them, resulting in smaller and cleaner deductions. All of the given transformations are fully implemented in SML-NJ. The complete code listing is presented, along with explanatory comments. Finally, although the transformations given here are defined for NDL, we point out that they can be applied to any type-alpha DPL that satisfies a few simple conditions.