1 resultado para Ant-based algorithm
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (66)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (265)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (31)
- Queensland University of Technology - ePrints Archive (205)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (15)
Resumo:
A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.