4 resultados para ANALYTIC-FUNCTIONS
em Massachusetts Institute of Technology
Resumo:
In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.
Resumo:
In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.
Resumo:
As part of a larger research project in musical structure, a program has been written which "reads" scores encoded in an input language isomorphic to music notation. The program is believed to be the first of its kind. From a small number of parsing rules the program derives complex configurations, each of which is associated with a set of reference points in a numerical representation of a time-continuum. The logical structure of the program is such that all and only the defined classes of events are represented in the output. Because the basis of the program is syntactic (in the sense that parsing operations are performed on formal structures in the input string), many extensions and refinements can be made without excessive difficulty. The program can be applied to any music which can be represented in the input language. At present, however, it constitutes the first stage in the development of a set of analytic tools for the study of so-called atonal music, the revolutionary and little understood music which has exerted a decisive influence upon contemporary practice of the art. The program and the approach to automatic data-structuring may be of interest to linguists and scholars in other fields concerned with basic studies of complex structures produced by human beings.
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.