3 resultados para 13078-016

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (e.g., albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from bandpassed image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dream of pervasive computing is slowly becoming a reality. A number of projects around the world are constantly contributing ideas and solutions that are bound to change the way we interact with our environments and with one another. An essential component of the future is a software infrastructure that is capable of supporting interactions on scales ranging from a single physical space to intercontinental collaborations. Such infrastructure must help applications adapt to very diverse environments and must protect people's privacy and respect their personal preferences. In this paper we indicate a number of limitations present in the software infrastructures proposed so far (including our previous work). We then describe the framework for building an infrastructure that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation, arbitration and high-level service discovery. Components of our own implementation of such an infrastructure are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a set of techniques that can be used to represent and detect shapes in images. Our methods revolve around a particular shape representation based on the description of objects using triangulated polygons. This representation is similar to the medial axis transform and has important properties from a computational perspective. The first problem we consider is the detection of non-rigid objects in images using deformable models. We present an efficient algorithm to solve this problem in a wide range of situations, and show examples in both natural and medical images. We also consider the problem of learning an accurate non-rigid shape model for a class of objects from examples. We show how to learn good models while constraining them to the form required by the detection algorithm. Finally, we consider the problem of low-level image segmentation and grouping. We describe a stochastic grammar that generates arbitrary triangulated polygons while capturing Gestalt principles of shape regularity. This grammar is used as a prior model over random shapes in a low level algorithm that detects objects in images.