18 resultados para Uniformly Convex
Resumo:
Uniformly distributed ZnO nanorods with diameter 80-120 nm and 1-2µm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip with high aspect ratio to flat tip with smaller aspect ratio. These kinds of structure are useful in laser and field emission application.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical rotation speed (ω[subscript c]), Taylor vortices appear in this system. Small air bubbles are introduced into the gap through a needle connected to a syringe pump. These are then captured in the cores of the vortices (core bubble) and in the outflow regions along the inner cylinder (wall bubble). The flow field is measured with a two-dimensional particle imaging velocimetry (PIV) system. The motion of the bubbles is monitored by using a high speed video camera. It has been found that, if the core bubbles are all of the same size, a bubble ring forms at the center of the vortex such that bubbles are azimuthally uniformly distributed. There is a saturation number (N[subscript s]) of bubbles in the ring, such that the addition of one more bubble leads eventually to a coalescence and a subsequent complicated evolution. Ns increases with increasing rotation speed and decreasing bubble size. For bubbles of non-uniform size, small bubbles and large bubbles in nearly the same orbit can be observed to cross due to their different circulating speeds. The wall bubbles, however, do not become uniformly distributed, but instead form short bubble-chains which might eventually evolve into large bubbles. The motion of droplets and particles in a Taylor vortex was also investigated. As with bubbles, droplets and particles align into a ring structure at low rotation speeds, but the saturation number is much smaller. Moreover, at high rotation speeds, droplets and particles exhibit a characteristic periodic oscillation in the axial, radial and tangential directions due to their inertia. In addition, experiments with non-spherical particles show that they behave rather similarly. This study provides a better understanding of particulate behavior in vortex flow structures.