301 resultados para 2004-10-BS
Resumo:
Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.
Resumo:
We first pose the following problem: to develop a program which takes line-drawings as input and constructs three-dimensional objects as output, such that the output objects are the same as the ones we see when we look at the input line-drawing. We then introduce the principle of minimum standard-deviation of angles (MSDA) and discuss a program based on MSDA. We present the results of testing this program with a variety of line- drawings and show that the program constitutes a solution to the stated problem over the range of line-drawings tested. Finally, we relate this work to its historical antecedents in the psychological and computer-vision literature.
Resumo:
In this paper we present an approach to perceptual organization and attention based on Curved Inertia Frames (C.I.F.), a novel definition of "curved axis of inertia'' tolerant to noisy and spurious data. The definition is useful because it can find frames that correspond to large, smooth, convex, symmetric and central parts. It is novel because it is global and can detect curved axes. We discuss briefly the relation to human perception, the recognition of non-rigid objects, shape description, and extensions to finding "features", inside/outside relations, and long- smooth ridges in arbitrary surfaces.
Resumo:
We describe a psychophysical investigation of the effects of object complexity and familiarity on the variation of recognition time and recognition accuracy over different views of novel 3D objects. Our findings indicate that with practice the response times for different views become more uniform and the initially orderly dependency of the response time on the distance to a "good" view disappears. One possible interpretation of our results is in terms of a tradeoff between memory needed for storing specific-view representations of objects and time spent in recognizing the objects.
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
We present psychophysical experiments that measure the accuracy of perceived 3D structure derived from relative image motion. The experiments are motivated by Ullman's incremental rigidity scheme, which builds up 3D structure incrementally over an extended time. Our main conclusions are: first, the human system derives an accurate model of the relative depths of moving points, even in the presence of noise; second, the accuracy of 3D structure improves with time, eventually reaching a plateau; and third, the 3D structure currently perceived depends on previous 3D models. Through computer simulations, we relate the psychophysical observations to the behavior of Ullman's model.
Resumo:
Scientists are faced with a dilemma: either they can write abstract programs that express their understanding of a problem, but which do not execute efficiently; or they can write programs that computers can execute efficiently, but which are difficult to write and difficult to understand. We have developed a compiler that uses partial evaluation and scheduling techniques to provide a solution to this dilemma.
Resumo:
We explore representation of 3D objects in which several distinct 2D views are stored for each object. We demonstrate the ability of a two-layer network of thresholded summation units to support such representations. Using unsupervised Hebbian relaxation, we trained the network to recognise ten objects from different viewpoints. The training process led to the emergence of compact representations of the specific input views. When tested on novel views of the same objects, the network exhibited a substantial generalisation capability. In simulated psychophysical experiments, the network's behavior was qualitatively similar to that of human subjects.
Resumo:
In the four years that the MIT Mobile Robot Project has benn in existence, we have built ten robots that focus research in various areas concerned with building intelligent systems. Towards this end, we have embarked on trying to build useful autonomous creatures that live and work in the real world. Many of the preconceived notions entertained before we started building our robots turned out to be misguided. Some issues we thought would be hard have worked successfully from day one and subsystems we imagined to be trivial have become tremendous time sinks. Oddly enough, one of our biggest failures has led to some of our favorite successes. This paper describes the changing paths our research has taken due to the lessons learned from the practical realities of building robots.
Resumo:
Visual object recognition requires the matching of an image with a set of models stored in memory. In this paper we propose an approach to recognition in which a 3-D object is represented by the linear combination of 2-D images of the object. If M = {M1,...Mk} is the set of pictures representing a given object, and P is the 2-D image of an object to be recognized, then P is considered an instance of M if P = Eki=aiMi for some constants ai. We show that this approach handles correctly rigid 3-D transformations of objects with sharp as well as smooth boundaries, and can also handle non-rigid transformations. The paper is divided into two parts. In the first part we show that the variety of views depicting the same object under different transformations can often be expressed as the linear combinations of a small number of views. In the second part we suggest how this linear combinatino property may be used in the recognition process.
Resumo:
In the principles-and-parameters model of language, the principle known as "free indexation'' plays an important part in determining the referential properties of elements such as anaphors and pronominals. This paper addresses two issues. (1) We investigate the combinatorics of free indexation. In particular, we show that free indexation must produce an exponential number of referentially distinct structures. (2) We introduce a compositional free indexation algorithm. We prove that the algorithm is "optimal.'' More precisely, by relating the compositional structure of the formulation to the combinatorial analysis, we show that the algorithm enumerates precisely all possible indexings, without duplicates.
Resumo:
We present an approach to the problem of recognizing three-dimensional objects from line-drawings. In this approach there are no models. The system needs only to be given a single picture of an object; it can then recognize the object in arbitrary orientations.
Resumo:
We review the progress made in computational vision, as represented by Marr's approach, in the last fifteen years. First, we briefly outline computational theories developed for low, middle and high-level vision. We then discuss in more detail solutions proposed to three representative problems in vision, each dealing with a different level of visual processing. Finally, we discuss modifications to the currently established computational paradigm that appear to be dictated by the recent developments in vision.
Resumo:
The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.
Resumo:
Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.