17 resultados para Robertson, William, 1721-1793.
Resumo:
The Message-Driven Processor is a node of a large-scale multiprocessor being developed by the Concurrent VLSI Architecture Group. It is intended to support fine-grained, message passing, parallel computation. It contains several novel architectural features, such as a low-latency network interface, extensive type-checking hardware, and on-chip memory that can be used as an associative lookup table. This document is a programmer's guide to the MDP. It describes the processor's register architecture, instruction set, and the data types supported by the processor. It also details the MDP's message sending and exception handling facilities.
Resumo:
This paper describes a method for limiting vibration in flexible systems by shaping the system inputs. Unlike most previous attempts at input shaping, this method does not require an extensive system model or lengthy numerical computation; only knowledge of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. An algorithm is presented which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimated natural frequency. A procedure for shaping inputs to systems with input constraints is outlined. The shaping method is evaluated by dynamic simulations and hardware experiments.
Resumo:
The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput.
Resumo:
We introduce a new method to describe, in a single image, changes in shape over time. We acquire both range and image information with a stationary stereo camera. From the pictures taken, we display a composite image consisting of the image data from the surface closest to the camera at every pixel. This reveals the 3-d relationships over time by easy-to-interpret occlusion relationships in the composite image. We call the composite a shape-time photograph. Small errors in depth measurements cause artifacts in the shape-time images. We correct most of these using a Markov network to estimate the most probable front surface, taking into account the depth measurements, their uncertainties, and layer continuity assumptions.
Resumo:
In low-level vision, the representation of scene properties such as shape, albedo, etc., are very high dimensional as they have to describe complicated structures. The approach proposed here is to let the image itself bear as much of the representational burden as possible. In many situations, scene and image are closely related and it is possible to find a functional relationship between them. The scene information can be represented in reference to the image where the functional specifies how to translate the image into the associated scene. We illustrate the use of this representation for encoding shape information. We show how this representation has appealing properties such as locality and slow variation across space and scale. These properties provide a way of improving shape estimates coming from other sources of information like stereo.
Resumo:
Data and procedures and the values they amass, Higher-order functions to combine and mix and match, Objects with their local state, the message they pass, A property, a package, the control of point for a catch- In the Lambda Order they are all first-class. One thing to name them all, one things to define them, one thing to place them in environments and bind them, in the Lambda Order they are all first-class. Keywords: Scheme, Lisp, functional programming, computer languages.
Resumo:
We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.
Resumo:
The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (e.g., albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from bandpassed image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.
Resumo:
While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
Resumo:
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.
Resumo:
Previous research in force control has focused on the choice of appropriate servo implementation without corresponding regard to the choice of mechanical hardware. This report analyzes the effect of mechanical properties such as contact compliance, actuator-to-joint compliance, torque ripple, and highly nonlinear dry friction in the transmission mechanisms of a manipulator. A set of requisites for high performance then guides the development of mechanical-design and servo strategies for improved performance. A single-degree-of-freedom transmission testbed was constructed that confirms the predicted effect of Coulomb friction on robustness; design and construction of a cable-driven, four-degree-of- freedom, "whole-arm" manipulator illustrates the recommended design strategies.
Resumo:
A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.
Resumo:
The actor message-passing model of concurrent computation has inspired new ideas in the areas of knowledge-based systems, programming languages and their semantics, and computer systems architecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula, and out of the use of continuations to interpret imperative constructs within A-calculus. The mathematical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and Giuseppe Attardi. This thesis extends and unifies their work through the following observations. The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time. The most general ordering laws are in fact equivalent to an axiom of realizability in global time. Independence results suggest that some notion of global time is essential to any model of concurrent computation. Since nondeterministic concurrency is more fundamental than deterministic sequential computation, there may be no need to take fixed points in the underlying domain of a power domain. Power domains built from incomplete domains can solve the problem of providing a fixed point semantics for a class of nondeterministic programming languages in which a fair merge can be written. The event diagrams of Greif's behavioral semantics, augmented by Baker's pending events, form an incomplete domain. Its power domain is the semantic domain in which programs written in actor-based languages are assigned meanings. This denotational semantics is compatible with behavioral semantics. The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-based language. Altering the semantics slightly can falsify the locality laws. The locality laws thus constrain what counts as an actor semantics.