3 resultados para metals contamination
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecem) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the Threshold Effect Level values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study aimed to provide the first biomonitoring integrating biomarkers and bioaccumulation data in São Paulo coast, Brazil and, for this purpose, a battery of biomarkers of defense mechanisms was analyzed and linked to contaminants' body burden in a weigh-of-evidence approach. The brown mussel Perna perna was selected to be transplanted from a farming area (Caraguatatuba) to four possibly polluted sites: Engenho D'Agua, DTCS (Dutos e Terminais do Centro-Oeste de São Paulo) oil terminal (Sao Sebastiao zone), Palmas Island, and Itaipu (It; Santos Bay zone). After 3 months of exposure in each season, mussels were recollected and the cytochrome P4501A (CYP1A)- and CYP3A-like activities, glutathione-S-transferase and antioxidants enzymes (catalase, glutathione peroxidase, and glutathione reductase) were analyzed in gills. The concentrations of polycyclic aromatic hydrocarbons, linear alkylbenzenes, and nonessential metals (Cr, Cd, Pb, and Hg) in whole tissue were also analyzed and data were linked to biomarkers' responses by multivariate analysis (principal component analysisfactor analysis). A representation of estimated factor scores was performed to confirm the factor descriptions and to characterize the studied stations. Biomarkers exhibited most significant alterations all year long in mussels transplanted to It, located at Santos Bay zone, where bioaccumulation of organic and inorganic compounds was detected. This integrated approach using transplanted mussels showed satisfactory results, pointing out differences between sites, seasons, and critical areas, which could be related to land-based contaminants' sources. The influence of natural factors and other contaminants (e.g., pharmaceuticals) on biomarkers' responses are also discussed. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.