5 resultados para chemical stability
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The toxicity of herbicides used in agriculture is influenced by their chemical stability, solubility, bioavailability, photodecomposition, and soil sorption. Possible solutions designed to minimize toxicity include the development of carrier systems able to modify the properties of the compounds and allow their controlled release. Polymeric poly(epsilon-caprolactone) (PCL) nanocapsules containing three triazine herbicides (ametryn, atrazine, and simazine) were prepared and characterized in order to assess their suitability as controlled release systems that could reduce environmental impacts. The association efficiencies of the herbicides in the nanocapsules were better than 84%. Assessment of stability (considering particle diameter, zeta potential, polydispersity, and pH) was conducted over a period of 270 days, and the particles were found to be stable in solution. In vitro release kinetics experiments revealed controlled release of the herbicides from the nanocapsules, governed mainly by relaxation of the polymer chains. Microscopy analyses showed that the nanocapsules were spherical, dense, and without aggregates. In the infrared spectra of the PCL nanocapsules containing herbicides, there were no bands related to the herbicides, indicating that interactions between the compounds had occurred. Genotoxicity tests showed that formulations of nanocapsules containing the herbicides were less toxic than the free herbicides. The results indicate that the use of PCL nanocapsules is a promising technique that could improve the behavior of herbicides in environmental systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study reports a physicochemical stability evaluation of a previously reported liposomal prilocaine (PLC(LUV)) formulation (Cereda el al. J. Pharm. Pharmaceut. Sci. 7:235, 2004) before and after steam sterilization as well as its local toxicity evaluation. Prilocaine (PLC) was encapsulated into extruded unilamellar liposomes (LUVs) composed by egg phosphatidylcholine:cholesterol:alfa-tocopherol (4:3:0.07, mole %). Laser light-scattering analysis (p > 0.05) and thiobarbituric acid reaction (p > 0.05) were used to evaluate the liposomes physical (size) and chemical (oxidation) stability, respectively. The prilocaine chemical stability was followed by (1)H-nuclear magnetic resonance. These tests detected no differences on the physicochemical stability of PLC or PLCLUV, sterilized or not, up to 30 days after preparation (p > 0.05). Finally, the paw edema test and histological analysis of rat oral mucosa were used to assess the possible inflammatory effects of PLC(LUV). PLC(LUV) did not evoke rat paw edema (p > 0.05), and no significant differences were found in histological analysis, when compared to the control groups (p > 0.05). The present work shows that PLC(LUV) is stable for a 30-day period and did not induce significant inflammatory effects both in the paw edema test and in histological analysis, giving supporting evidence for its safely and possible clinical use in dentistry.
Resumo:
This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.
Resumo:
2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine.Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade.The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component.Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.