4 resultados para PARASITIC WASP
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
In the present study, the effects of Polybia paulista venom (PPV) on renal and vascular tissues were investigated. Isolated kidneys perfused with PPV (1 and 3 mu g/mL) had increased perfusion pressure, renal vascular resistance, urinary flow, and glomerular filtration rate; and reduced sodium tubular transport. Histological evaluation demonstrated deposits of proteins in Bowman's space and tubular lumen, and focal areas of necrosis. The venom promoted a cytotoxic effect on Madin-Darby canine kidney (MDCK) cells. A significant increase in lactic dehydrogenase levels was observed in response to venom exposure. In isolated mesenteric vascular beds, pressure and vascular resistance augmented in a dose-dependent manner. PPV increased the contractility of aortic rings maintained under basal tension. This contractile response was inhibited when preparations were maintained in Ca2+-free medium. Likewise, verapamil, a voltage-gated calcium channel blocker, also inhibited the contractile response. In this study, phentolamine, a blocker of a-adrenergic receptor blocker, significantly reduced the contractile effect of PPV in the aortic ring. In conclusion, PPV produced nephrotoxicity, which suggests a direct effect on necrotic cellular death in renal tubule cells. The vascular contractile effect of PPV appears to involve calcium influx through voltage-gated calcium channels via adrenergic regulation.
Resumo:
The effects of parasitic infections in condition factor, hematocrit, hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and leucocytes and thrombocytes distribution in Piaractus mesopotamicus, Leporinus macrocephalus, hybrid tambacu (P. mesopotamicus x Colossoma macropomum and Brycon amazonicus collected in feefishing from Franca, São Paulo, Brazil were evaluated. Parasitized tambacu and L. macrocephalus had higher (p<0.05) condition factor than unparasitized fish. However, the contrary occurred in P. mesopotamicus and B. amazonicus. Changes in the hematocrit, hemoglobin and MCHC were not related to parasitism. Parasitic infections did not cause effect on leucocytes and thrombocytes percentage (p>0.05) of tambacu. In P. mesopotamicus parasitized by Monogenea Anacanthorus penilabiatus and dinoflagellate Piscinoodinium pillulare, increase in monocytes and decrease in thrombocytes percentage (p<0.05) were found. However, the same parasitic association in L. macrocephalus caused a decrease in lymphocytes percentage accompanied by increase in neutrophils percentage (p<0.05). In B. amazonicus, infection by Ichthyophthirius multifiliis, P. pillulare and monogeneans caused increase in neutrophils percentage.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. These peptides present a wide spectrum of biological activities, such as mast cell degranulation, hemolytic activity and also reveals antimicrobial activity. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized. At room temperature these crystals diffracted to 2.8 Angstrom resolution. However, upon cooling to cryogenic temperature around 85 K, the original resolution limit could be improved to 2.0 Angstrom. Crystals were determined to belong to the space group P3(1) (P3(2)). This is the first mastoparan to be crystallized and it will provide further insights in the conformational significance of mastoparan toxins, with respect to their potency and activity in G protein regulation. (C) 3001 Elsevier B.V. B.V. All rights reserved.