2 resultados para Governing the Local

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bupivacaine (BVC; S75-R25, NovaBupilocal anesthetic. Sodium alginate is a water-soluble linear polysaccharide. The present study reports the development of alginate/bis(2-ethylhexyl) sulfosuccinate (AOT) and alginate/chitosan nanoparticle formulations containing BVC (0.5%). The amounts of BVC associated in the alginate/AOT and alginate/chitosan nanoparticles were 87 +/- 1.5 and 76 +/- 0.9%, respectively. The average diameters and zeta potentials of the nanoparticles were measured for 30 days, and the results demonstrated the good stability of these particles in solution. The in vitro release kinetics showed a different behavior for the release profile of BVC in solution, compared with BVC-loaded alginate nanoparticles. In vitro and in vivo assays showed that alginate-chitosan BVC (BVC(ALG-CHIT)) and alginate-AOT BVC (BVC(ALG-AOT)) presented low cytotoxicity in 3T3-fibroblasts, enhanced the intensity, and prolonged the duration of motor and sensory blockades in a sciatic nerve blockade model.