5 resultados para ANTI-TRYPANOSOMAL ACTIVITY

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders.Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae).Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity.Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan.Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper was demonstrated that umbelliferone induces changes in structure and pharmacological activities of Bn IV, a lysine 49 secretory phospholipase A(2) (sPLA2) from Both tops neuwiedi. Incubation of Bn IV with umbelliferone virtually abolished platelet aggregation, edema, and myotoxicity induced by native Bn IV. The amino acid sequence of Bn IV showed high sequence similarities with other Lys49 sPLA2s from B. jararacussu (BthTx-I), B. pirajai (PrTx-I), and B. neuwiedi pauloensis (Bn SP6 and Bn SP7). This sPLA2 also has a highly conserved C-terminal amino acid sequence, which has been shown as important for the pharmacological activities of Lys49 sPLA2. Sequencing of Bn IV previously treated with umbelliferone revealed modification of S(1) and S(20). Fluorescent spectral analysis and circular dichroism (CD) studies showed that umbelliferone modified the secondary structure of this protein. Moreover, the pharmacological activity of Bn IV is driven by synergism of the C-terminal region with the a-helix motifs, which are involved in substrate binding of the Asp49 and Lys49 residues of 5PLA2 and have a direct effect on the Ca2+-independent membrane damage of some secretory snake venom PLA2. For Bn IV, these interactions are potentially important for triggering the pharmacological activity of this 5PLA2. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flavonoids, coumarins and other polyphenolic compounds are powerful antioxiants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. Despite being widely used as powerful therapeutic agents for blood coagulation disorders, more specifically to control some serine protease enzymes, the mechanism of anti-inflammatory activity of coumarins is unknown, unlike that of flavonoids. Although their controlling effect on serine proteases is well acknowledged, their action on secretory phospholipase A2 (sPLA2) remains obscure. The present study describes the interaction between umbelliferone (7-HOC) and the sPLA2 from Crotalus durissus collilineatus venom. In vitro inhibition of sPLA2 enzymatic activity by 7-HOC was estimated using 4N3OBA as substrate, resulting in an irreversible decrease in such activity proportional to 7-HOC concentration. The biophysical interaction between 7-HOC and sPLA2 was examined by fluorescent spectral analysis and circular dichroism studies. Results from both techniques clearly showed that 7-HOC strongly modified the secondary structure of this enzyme and CD spectra revealed that it strongly decreased sPLA2 alphahelical conformation. In addition, two-dimensional electrophoresis indicated an evident difference between HPLC-purified native and 7-HOC-treated sPLA2s, which were used in pharmacological experiments to compare their biological activities. In vivo anti-inflammatory activity was assessed by the sPLA2-induced mouse paw edema model, in which 7-HOC presented an effect similar to those of dexamethasone and cyproheptacline against the pro-inflammatory effect induced by native sPLA2 on the mouse paw edema, mast cell degranulation and skin edema. on the other hand, 7-HOC exhibited a more potent inhibitory effect on sPUL2 than that of p-bromophenacyl bromide (p-BPB). Our data suggest that 7-HOC interacts with sPLA2 and causes some structural modifications that lead to a sharp decrease or inhibition of the edematogenic and myotoxic activities of this enzyme, indicating its potential use to suppress inflammation induced by sPLA2 from the snake venom. (C) 2008 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Helicobacter pylori is a bacterium recognized as the major cause of chronic gastritis and peptic ulcers. Infection by H. pylori induces inflammatory responses and pathological changes in the gastric microenvironment. The host Keywords: immune cells (especially neutrophils) release inflammatory mediators and large 5-methoxy-3,4-dehydroxanthomegnin amounts of reactive oxygen species (ROS), which are associated with an increased Helicobacter pyloririsk of developing gastric cancer. In this study, we evaluated the anti-H. pylori and oxidative burst antioxidantactivitiesofa1,4-naphthoquinone-5-methoxy-3,4-dehydroxanthomegnin. Paepalanthus latipes The antimicrobial activity was assessed using a spectrophotometric microdilution technique, and antioxidant activity was assessed by noting the effect of 5-methoxy3,4-dehydroxanthomegnin on the neutrophil oxidative burst using luminol-and lucigenin-amplified chemiluminescence. The results showed that 5-methoxy-3,4dehydroxanthomegnin is a potent anti-H. pylori compound (MIC 64 µg/mL and MBC 128 µg/mL) and a strong antioxidant. 5-Methoxy-3,4-dehydroxanthomegnin decreased luminol- and lucigenin-amplified chemiluminescence, with ED50 values of 1.58±0.09 µg/mL and 5.4±0.15 µg/mL, respectively, reflecting an inhibitory effect on the oxidative burst. These results indicate that 5-methoxy-3,4-dehydroxanthomegnin is a promising compound for the prevention and treatment of diseases caused by H. pylori infection, such as gastritis, peptic ulceration, and gastric cancer, because reactive oxygen intermediates are involved in the pathogenesis of gastric mucosal injury induced by H. pylori infections.