609 resultados para Air Force Flight Test Center (U.S.)
Resumo:
Mode of access: Internet.
Resumo:
4 leaves in pocket.
Resumo:
"January 1977."
Resumo:
Prototype scale tests of the mooring load and wave transmission characteristics of a floating tire breakwater were conducted in the large wave tank at the Coastal Engineering Research Center. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters, 28 and 42 feet) wide in the direction of wave advance, were tested in water depths of 2 and 4 meters (6.56 and 13.12 feet). Monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters (4.6 feet) were used in the tests. Test results indicate that wave transmission is mainly a function of the breakwater width to incident wavelength ratio with a slight dependence on the incident wave height. However, the mooring forces are mainly a function of the incident wave height with only a slight dependence on the incident wavelength and breakwater width. Recommended design curves for the wave transmission coefficient versus breakwater width to wavelength ratio and mooring load as a function of incident wave height are presented. (Author).
Resumo:
Along most of the U.S. east and gulf coasts from Long Island to the Mexican Border, bottom profiles extending over the Inner Continental Shelves normal from the coast display a characteristic two-sector shape. Near the coast, the 'shoreface' profile sector is steep and concave-up; the seaward 'ramp' sector is planar with a gradual slope away from the coast. As part of the Beach Evaluation Program at this Center, 9 profiles extending from the coast 30.5 km (19 miles) seaward at each of 49 localities were averaged to mathematically characterize the profiles and to develop and test criteria for discriminating among groups of profiles. Results indicate Inner Continental Shelf profiles can be mathematically defined by 4 parameters: a = ramp slope (0 - 0.00107); b = depth of the ramp at the shoreline, when the ramp is extended as a straight line below the shoreface sector (0 - 24.7 meters, 0 - 81 feet); c = distance from the shoreline to the shoreface-ramp boundary (0.2 - 20.6 km, 0.12 - 12.9 miles); and f = index of concavity of the shoreface sector (0.21 - 1.72). Values in parentheses are the range of values obtained for the 49 averaged profiles. An equation was developed to define bottom depth as a function of distance from shore incorporating these four parameters. Computed depths using the equation were found to be generally within 5% of actual profile depths. In most cases, no relationship was found between the geometric characteristics of the shoreface and the ramp.
Resumo:
"February 1980."
Resumo:
"AFML-TR-77-160."
Resumo:
"AD-866 818."
Resumo:
"Materials Central. Contract no. AF 33 (616)-58-4, Project no. 7360."
Resumo:
"Published August 1961."
Resumo:
"Cornell Aeronautical Laboratory, Inc. has assigned Report no. XA-2177-B-1 to this document."
Resumo:
Final report no. AFOSR 3207.
Resumo:
"This work was supported by the Air Research and Development Center, Griffis Air Force Base, New York."
Resumo:
Mode of access: Internet.
Resumo:
Inserted Report documentation page designates E.R. Stover as "author."