326 resultados para Motorization, public transport, automotive fleet, motorcycles
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Contract no. UT-90008.
Resumo:
Issued October 1977.
Resumo:
"April 1980."
Resumo:
"January 1981."
Resumo:
"November 1966."
Radioactivity transport in water--environmental behavior of nitrosylruthenium : technical report 3 /
Resumo:
"Atomic Energy Commission Contract AT(11-1)-490."
Resumo:
"June 1964."
Resumo:
New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.
Resumo:
"June 1980."
Resumo:
"April 1981."
Resumo:
"DOE/EV-0127."
Resumo:
As presently used, the immersed weight rate, I sub l, is the volume rate, Q, of longshore transport, multiplied by a constant. For use in engineering problems, I sub l must be converted back to the equivalent Q. The I sub l formulation may be important where the unit weight of sand differs significantly from the unit weight of sand at the open-coast sites contributing data to the design curve. Increase in void ratio may result in a 10- to 20-percent increase in actual (as compared to predicted) shoaling volumes where sand accumulates in protected water. Void ratio should be measured in field studies of longshore transport.