4 resultados para Músculos do assoalho pélvico
em Universidade Técnica de Lisboa
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
Dynamic knee valgus is a multi-planar motion that has been associated with anterior cruciate ligament injuries and patellofemoral pain syndrome. Clinical assessment of dynamic knee valgus can be made by looking for the visual appearance of excessive medial knee displacement (MKD) in the double-leg squat (DLS). The purpose of this dissertation was to identify the movement patterns and neuromuscular strategies associated with MKD during the DLS. Twenty-four control subjects and eight individuals showing MKD during the DLS participated in the study. Significant differences were verified between subjects that demonstrated MKD and a control (CON) group for the eletromyographic amplitude of adductor magnus, biceps femoris, vastus lateralis and vastus medialis muscles (p < 0.05), during the descending phase of the DLS. During the ascending phase were found group differences for adductor magnus and rectus femoris muscles (p < 0.05). Results from kinematic analysis revealed higher minimum and maximum values of ankle abduction and knee internal rotation angles (p < 0.05) for the MKD group. Also, individuals showing excessive MKD had higher hip adduction/abduction excursion. Our results suggested that higher tibial internal rotation and knee internal rotation angles in the initial position of the DLS are associated with MKD. The neuromuscular strategies that contributed to MKD were higher adductor magnus activation, whereas biceps femoris, vastus lateralis and vastus medialis activated more to stabilize the knee in response to the internal rotation moment.
Resumo:
The well-known degrees of freedom problem originally introduced by Nikolai Bernstein (1967) results from the high abundance of degrees of freedom in the musculoskeletal system. Such abundance in motor control have two sides: i) because it is unlikely that the Central Nervous System controls each degree of freedom independently, the complexity of the control needs to be reduced, and ii) because there are many options to perform a movement, a repetition of a given movement is never the same. It leads to two main topics in motor control and biomechanics: motor coordination and motor variability. The present thesis aimed to understand how motor systems behave and adapt under specific conditions. This thesis comprises three studies that focused on three topics of major interest in the field of sports sciences and medicine: expertise, injury risk and fatigue. The first study (expertise) has focused on the muscle coordination topic to further investigate the effect of expertise on the muscle synergistic organization, which ultimately may represent the underlying neural strategies. Studies 2 (excessive medial knee displacement) and 3 (fatigue) both aimed to better understand its impact on the dynamic local stability. The main findings of the present thesis suggest: 1) there is a great robustness in muscle synergistic organization between swimmers at different levels of expertise (study 1, chapter II), which ultimately indicate that differences in muscle coordination is mainly explained by peripheral adaptations; 2) injury risk factors such as excessive medial knee displacement (study 2, chapter III) and fatigue (study 3, chapter IV) alter the dynamic local stability of the neuromuscular system towards a more unstable state. This change in dynamic local stability represents a loss of adaptability in the neuromuscular system reducing the flexibility to adapt to a perturbation.