15 resultados para nome atributivo
em Universidade dos Açores - Portugal
Resumo:
Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 27 de Junho de 2014, Universidade dos Açores.
Resumo:
Dissertação de Mestrado, Ciências Económicas e Empresariais, 16 de Dezembro 2013, Universidade dos Açores.
Resumo:
[...] Este número, identificado no Apocalipse de São João com a Besta ou o Anticristo, foi ao longo dos tempos o preferido de muitos profetas e numerólogos para as suas interpretações. Seguem-se alguns dos argumentos utilizados para justificar essas leituras apocalípticas. [...] Contam-se vários casos curiosos ao longo da nossa história, em que se tentou identificar algumas personalidades com a figura da Besta, como foi o caso de Napoleão, Hitler e Saddam Hussein. O procedimento adotado baseia-se nos seguintes passos: atribuir valores numéricos às letras de um determinado alfabeto; considerar o nome da pessoa escrito nesse alfabeto; adicionar os valores numéricos correspondentes às letras que compõem esse nome; e verificar se o resultado obtido é igual a 666. Vejamos um exemplo muito simples: se utilizarmos o nosso alfabeto (de 26 letras) e a correspondência A=100; B=101; C=102; …, a soma dos números associados às letras da palavra HITLER é igual a 107+108+119+111+104+117=666. [...] Vejamos algumas curiosidades relacionadas com a aversão ao número 666, designada por Hexacosioihexecontahexafobia ou simplesmente Trihexafobia. Por exemplo, numa cidade do estado de Luisiana, nos Estados Unidos da América, chegou-se ao ponto de mudar o indicativo telefónico da zona, que era o 666, para que a cidade não ficasse associada à figura da Besta. Ainda nos Estados Unidos, durante muito tempo persistiu a polémica em torno da mudança de nome da auto-estada US 666, conhecida como “auto-estrada para o inferno”. A superstição numerológica aliada a uma elevada taxa de mortalidade causada por acidentes rodoviários convenceu algumas pessoas de que esta via estava amaldiçoada. Em 2003, a sua designação acabou mesmo por ser alterada para US 491. A verdade é que, desde então, o número de acidentados diminuiu de forma significativa… o que provavelmente se ficou a dever às obras de melhoria da estrada que foram implementadas desde a alteração do nome. [...]
Resumo:
Na sua obra "Unpopular Essays", de 1950, o conhecido matemático e filósofo Bertrand Russel refere que o ser humano é um animal crédulo que precisa acreditar em algo e que, na ausência de uma boa crença, ele fica satisfeito com a má. Na cultura ocidental, o 13 é um dos números com mais impacto no universo das superstições e das crenças populares. Há mesmo quem leve muito a sério a suposta influência negativa deste número e que, por isso mesmo, o evite a todo o custo. (...) Algumas companhias aéreas, como a Air France e a Lufthansa, ainda omitem a fila 13 nos seus aviões. Em algumas partes do mundo, é raro conseguir encontrar um Hotel que não tenha renumerado o seu décimo terceiro andar (substituindo o 13 pelo 14 ou por 12A). É o caso, por exemplo, de Nova Iorque. O curioso é que ainda antes dos prédios terem 13 andares, já se saltava do 12 para o 14 na numeração dos quartos. Mas há quem vá mais longe, recusando-se a pernoitar, por exemplo, num quarto 454, por entender que esse número está a camuflar o 13 (note-se que 4+5+4=13). Stephen King, conhecido autor de contos de horror fantástico e de ficção, revelou que, quando está a ler um livro, nunca pára nas páginas 94, 193, 283 e em todas as outras em que a soma dos algarismos seja 13. Os jogadores de críquete da Austrália costumam chamar ao 87 "o número do diabo", já que 87=100-13. Há também quem evite morar numa casa com o número 13 ou que não queira dar um nome ao seu filho com exatamente 13 letras. Outro aspeto referido com frequência tem a ver com o facto do décimo terceiro Arcano Maior do Tarot ser a carta da morte (...) Alguns acontecimentos históricos ajudaram a alimentar a fobia ao 13. Lançada no dia 11 de abril de 1970, às 13h13, a Apollo 13 consistiu na terceira missão tripulada do Projeto Apollo com destino à Lua (note-se que, se adicionarmos os algarismos de 11/04/70, obtém-se 13). Devido a um acidente causado por uma explosão num dos módulos, não foi possível concluir a missão. Mesmo assim, os tripulantes conseguiram regressar com a nave à Terra, após seis dias no espaço. (...)
Resumo:
[...]. Historicamente falando, atribui-se a John Napier (Neper) a descoberta deste número no século XVII (que mais tarde passou a ser conhecido pelo seu nome). Mas só cerca de um século depois, com o desenvolvimento do cálculo infi nitesimal, Euler reconheceu a importância deste número. O símbolo e que é usado para designar este número foi escolhido em homenagem a Euler. [...].
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
Na presente nota de abertura, a autora, para além de uma breve alusão ao texto, chama a atenção para a importância da promoção das artes dramáticas na escola.
Resumo:
Na qualidade de Diretora Regional das Comunidades, fomos responsável pela redação dos artigos e coordenação da página "Comunidades", integrada no jornal Açoriano Oriental, servindo a mesma para a divulgação das atividades realizadas pela Direção Regional Das Comunidades do Governo dos Açores.
Resumo:
(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)
Resumo:
(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)
Resumo:
Dissertação de Mestrado, Ciências da Comunicação, 22 de Maio de 2015, Universidade dos Açores.
Resumo:
(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.
Resumo:
Nesta edição do Tribuna das Ilhas, regresso ao tema da Calçada Portuguesa por um bom motivo. A Direção Regional da Cultura, através da Biblioteca Pública e Arquivo Regional João José da Graça, inaugurou no passado dia 11 de dezembro uma exposição de pintura e fotografia intitulada "Ladrilhos de areia e vento", da autoria de Helius Horta. (...) Hélio Silveira, natural da freguesia da Matriz, é a pessoa por detrás do nome artístico Helius Horta. (...) Sobre a articulação entre os vários suportes usados, como a pintura e a fotografia, Hélio refere que “considerei importante mostrar a perspetiva fotográfica e a pintura, utilizando os mesmos desenhos dos ladrilhos da cidade da Horta, como foi o caso da Esfera Armilar, do Moinho e da Cruz de Cristo, por exemplo”. A este propósito, refira-se que os exemplos apresentados pelo Hélio são rosáceas: figuras do plano que apresentam simetrias de rotação e, em alguns casos, simetrias de reflexão ou de espelho. Analisemos algumas rosáceas. (...)
Resumo:
Retomo a conversa com o autor da exposição "Ladrilhos de areia e vento", Hélio Silveira, de nome artístico Helius Horta. A exposição, patente na Biblioteca Pública e Arquivo Regional João José da Graça, foi inaugurada no passado dia 11 de dezembro e encerra no próximo dia 29 de fevereiro. (...) Questionado sobre a importância que atribui à análise das simetrias, que se traduzem na repetição de um motivo em torno de um ponto ou ao longo de uma faixa, Hélio salienta que os padrões são a fonte de inspiração que pretende aprofundar em futuros trabalhos: “já nas últimas obras realizadas trabalhei com padrões geométricos, conjugando simetrias cromaticamente. É precisamente este o enfoque que quero dar a partir de agora aos meus trabalhos. Explorar melhor e em vários materiais os desenhos geométricos em basalto e as suas simetrias, como já fiz com o ‘hexágono vazado e alongado’ que está patente em duas das obras” (...)
Resumo:
Em tempos que já lá vão, aprendemos um algoritmo para multiplicar números. Talvez o nosso professor não o designasse “algoritmo” para não nos assustar, mas, independentemente da formalidade do nome, aprendemos um conjunto bem definido de regras para executar a operação da multiplicação. Este artigo descreve este algoritmo e o algoritmo inventado pelo matemático russo Anatoly Alexeevitch Karatsuba (1937–2008).