15 resultados para modelação numérica
em Universidade dos Açores - Portugal
Resumo:
Tese de Doutoramento, Geografia (Ordenamento do Território), 25 de Novembro de 2013, Universidade dos Açores.
Resumo:
21º Workshop da APDR. Estratégias, Infra-estruturas e Redes Empreendedoras para o Desenvolvimento Regional, 27 de Novembro de 2014, Oeiras, Lisboa.
Resumo:
Dissertação de Mestrado, Engenharia e Gestão de Sistemas de Água, 12 de Outubro de 2015, Universidade dos Açores.
Resumo:
A Matemática tem um grande impacto nas nossas vidas, mesmo que muitas vezes não nos demos conta da sua aplicabilidade. Através de um código próprio, a Matemática fornece importantes ferramentas que permitem descrever e compreender a realidade que nos rodeia. Em particular, a Matemática ajuda-nos a interpretar os fenómenos que observamos na Natureza. (...) A beleza das conchas marinhas constitui um claro convite à construção de modelos matemáticos que possam proporcionar uma melhor compreensão do mecanismo associado à sua formação. (...)
Resumo:
O texto aborda a mudança de base numérica, da base dez para a base dois, explicitando os conceitos base de compreensão em relação aos constituintes principais de uma base numérica.
Resumo:
Jornadas "Ciência nos Açores – que futuro? Tema Ciências Naturais e Ambiente", Ponta Delgada, 7-8 de Junho de 2013.
Resumo:
Jornadas "Ciência nos Açores - que futuro?", Biblioteca Pública e Arquivo Regional de Ponta Delgada, Largo do Colégio, Ponta Delgada, 7-8 de junho.
Resumo:
A aprendizagem da Matemática é mais significativa quando os alunos têm a oportunidade de experimentar e de verificar os conceitos nas suas vivências do dia a dia. Com este intuito, desenvolveu-se um projeto no Colégio do Castanheiro, em São Miguel, Açores, numa turma do 3.º ano de escolaridade, em que as crianças tiveram de construir modelos do corpo humano, com recurso constante a ferramentas matemáticas. Este artigo apresenta a estrutura e as várias fases de implementação do projeto, realçando no final alguns aspetos que consideramos importantes no âmbito do trabalho desenvolvido.
Resumo:
Tese de Doutoramento, Ciências do Mar (Ecologia Marinha)
Resumo:
Neste artigo apresentamos algumas simetrias numéricas e informação sobre os capicuas.
Resumo:
Neste artigo, vamos viajar no tempo e assistir ao nascimento do zero. (...) As origens da Matemática remontam a alguns milhares de anos antes das primeiras civilizações e derivaram da necessidade de contar objetos. Em primeiro lugar, foi necessário distinguir um objeto de muitos objetos (caçar um pássaro ou muitos pássaros). Com o passar do tempo, a linguagem desenvolveu-se para distinguir entre um, dois e muitos. Em seguida, um, dois, três e muitos. (...) O passo seguinte consistiu em agrupar objetos de forma a facilitar a contagem. (...) A verdade é que os antigos gostavam de contar com as partes do seu corpo. Os favoritos eram o 5 (uma mão), o 10 (as duas mãos) e o 20 (ambas as mãos e os pés). O sistema numérico de base 10 acabou por vingar em muitas culturas e isso refletiu-se no vocabulário que ainda hoje utilizamos. Em português, as palavras “onze”, “doze” e “treze” derivam do latim (undecim, duodecim e tredecim), significando “dez e um”, “dez e dois” e “dez e três”. (...) Os sistemas antigos de numeração não contemplaram o zero. A verdade é que ninguém precisava de registar “zero ovelhas” nem contar “zero aves”. Em vez de dizer “tenho zero lanças”, bastava afirmar “não tenho lanças”. Como não era preciso um número para expressar a falta de alguma coisa, não ocorreu a necessidade de atribuir um símbolo à ausência de objetos. (...) O sistema de numeração grego, tal como o egípcio, ignorou por completo o zero. O zero nasceu noutra zona do globo: no Oriente, concretamente, no Crescente Fértil do atual Iraque. O sistema de numeração babilónico era, de certa forma, invulgar. Os babilónios tinham um sistema sexagesimal, de base 60, e usavam apenas duas marcas para representar os seus números: uma cunha simples para representar o 1 e uma cunha dupla para representar o 10. (...) os babilónios tiveram uma excelente ideia: inventaram um sistema de numeração posicional, em que os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. (...) Para os babilónios, o zero era um simples marca-lugar; um símbolo para uma casa em branco no ábaco. O zero não ocupava um lugar na hierarquia dos números; não tinha ainda assumido a sua posição estratégica na reta numérica como o número que separa os números positivos dos negativos. (...)
Resumo:
(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.
Resumo:
(...) Os number bonds (esquemas todo-partes) constituem um dos procedimentos didáticos mais famosos do Método de Singapura. Estas representações auxiliam a compreensão numérica basilar, nomeadamente a capacidade de decompor quantidades e a álgebra fundamental (adições e subtrações). Neste artigo, analisaremos o que são, quais as vantagens e a forma de utilização destes esquemas no 1.º ano de escolaridade. (...)
Resumo:
O nosso sistema de numeração decimal é um sistema de natureza posicional: os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. Por exemplo, quando escrevemos o numeral relativo ao número treze, “13”, estamos na realidade a utilizar uma numeração mista: “1” vale uma dezena e “3” vale três unidades. Treze, na sua escrita matemática atual, traduz a organização uma dezena mais três unidades; dez unidades de uma ordem numérica são alvo de uma composição para uma unidade da ordem numérica seguinte, o que traduz a essência de um sistema posicional de base 10. Por isso, o “10” desempenha um papel de extrema importância e a forma como as crianças desenvolvem as primeiras explorações do nosso sistema de numeração é determinante para as suas aprendizagens futuras. (...) Para estimular uma verdadeira compreensão da ordem das dezenas, as atividades típicas são: (a) Separa 10 e diz o número; (b) Pinta 10 e diz o número; (c) Utilização de dispositivos com algarismos móveis (presentes em todos os manuais do bem sucedido método de Singapura). Vejamos como podemos promover a compreensão da ordem das dezenas e ultrapassar com eficácia a “barreira” do 10. (...)
Resumo:
Segundo consta, a primeira tentativa conhecida para representar números demasiadamente extensos foi realizada pelo notável matemático, físico e inventor grego Arquimedes (287 a.C – 212 a.C). O “pai da notação científica” descreveu-a na sua obra “O contador de Areia”, no século III a.C., depois de desenvolver um método de representação numérica para estimar quantos grãos de areia seriam necessários para preencher o universo. Já agora, o número estimado foi 10^63 (10 elevado a 63) grãos, ou seja, 1 seguido de 63 zeros. Neste artigo aborda-se a notação científica e a sua importância na escrita de pequenos e grandes números.