5 resultados para infinito Cantor numeri transfiniti

em Universidade dos Açores - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[...]. Seguindo o senso comum, em particular que o todo é maior (ou igual) do que a soma das partes, não haverá dúvidas em afirmar que existem mais números inteiros do que números pares e que mais janelas do que quartos. Assunto resolvido! Mas, se pensarmos com um pouco mais de cuidado, há uma infinidade de números pares e uma infinidade de números inteiros positivos. Para o comprovar podemos fazer o seguinte jogo: por maior que seja o número par que eu indique, o leitor consegue sempre fornecer-me um número par maior do que aquele que referi. Para tal basta adicionar dois ao número que indiquei. O mesmo acontece para os número inteiros positivos e por isso dizemos que estes conjuntos são infinitos. Mas como determinar qual destes infinitos é maior? Fará sequer sentido comparar dois infinitos? Neste artigo irei apresentar alguns argumentos que ajudarão o leitor a raciocinar sobre este tipos de questões. [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ao retomar o tema do último artigo, lanço novamente ao leitor o desafio de se tornar num detetive à descoberta de simetrias nas peças de tecelagem da autoria de Joana Dias. (...) Encontramos frisos em todos os exemplos selecionados. Os frisos são figuras que apresentam simetrias de translação numa única direção. Isto significa que estamos na presença de um friso sempre que é possível identificar um motivo que se repete sucessivamente ao longo de uma faixa, estando as cópias do motivo igualmente espaçadas. A classificação do friso baseia-se na forma como esse motivo se repete, ou seja, na identificação de outras simetrias que o friso possa apresentar. (...) Vejamos o primeiro exemplo (figura 1): "Esta mala é uma peça recente trabalhada em fio de algodão e retalhos de tecido de algodão. Cada mala corresponde seguramente a mais de oito horas de trabalho. Aprendi em S. Jorge um ditado popular muito interessante: À casa da tecedeira sempre lhe faltou telha!" Ao analisar em pormenor uma das suas faixas (figura 2), o friso em causa apresenta simetrias de reflexão em espelho (tem um eixo de simetria horizontal, que coincide com a reta a amarelo; e, supondo que o motivo se repete indefinidamente para a esquerda e para a direita, um número infinito de eixos de simetria verticais). Se o leitor colocar um espelho perpendicular à página do jornal, de modo a que a borda do espelho assente na reta a amarelo (reta horizontal que divide o friso ao meio), verá que cada lado da imagem é, de facto, um reflexo do outro. O mesmo exercício pode ser feito assentando o espelho nos eixos de simetria verticais do friso. Este exemplo também apresenta simetrias de meia-volta: se virarmos o friso "de pernas ao ar", a sua configuração não se altera. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[...] viagem ao hotel infinito de Hilbert. Sei que na atual crise económica não é prudente qualquer devaneio turístico, mas como o prometido é devido, eis-me a tentar explicar um desafio que ficou em banho-maria desde dezembro e que consistia em resolver o seguinte enigma: se um hotel tiver um número infinito de quartos e cada quarto possuir um número infinito de janelas, será que existem mais quartos do que janelas? [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[...]. Outra contribuição de Eratóstenes é a elaboração de um método para determinar uma lista de números primos. Recordo que um número primo é um inteiro maior do que 1 e que é divisível somente por si e pela unidade. A lista dos primeiros 13 números primos é 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 e 41. Estes números formam um conjunto infinito e têm propriedades muito interessantes. Refira-se que é possível escrever qualquer número inteiro (maior do que 1) usando somente multiplicações de números primos, designada por decomposição de um número em fatores primos. Por exemplo, 60 = 2 x 2 x 3 x 5. Mais, esta decomposição é única. [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.