13 resultados para espaçamento entre linhas
em Universidade dos Açores - Portugal
Resumo:
Paul Ricoeur é o filósofo contemporâneo que de um modo muito especial conseguiu dialogar com quase todas as correntes filosóficas e interligá-las em questões fulcrais para o pensamento filosófico actual. Uma delas, e aquela que desde 1991 elegemos como nosso quesito principal, é a questão da imaginação. Paradoxalmente é uma temática que o filósofo não desenvolveu. Mas é também aquela que, em nosso entender, subjaz a todo o entrelaçado do seu riquíssimo pensamento nomeadamente no impressionante trabalho sistematizador que faz da obra de Freud, no livro intitulado De l'interprétation, essai sur Freud, publicado em 1965. De l'interprétation, essai sur Freud organiza os conceitos e examina, tanto o detalhe como as linhas mestras do pensamento freudiano, pelo comentário de importantes passagens da obra de Freud, de entre as quais salientamos: a passagem da teoria da sedução para as teorias que valorizam a fantasia. Nesta obra Ricoeur destaca o amor de Freud pelas artes e o seu preconceito contra a religião, sendo nesse amor e nessa rejeição que interceptamos a possível inteligibilidade da imaginação, na psicanálise, como ilusão.
Resumo:
Tese de Doutoramento, Estudos Portugueses, 24 de Fevereiro de 2014, Universidade dos Açores.
Resumo:
O termo padrão quando empregue no dia a dia pode assumir diferentes significados. Em geral, está associado à identificação de algum tipo de regularidade. A Matemática, enquanto ciência dos padrões, fornece ferramentas que permitem classificar de forma rigorosa e exaustiva os padrões que encontramos, sejam eles numéricos, geométricos ou de outra natureza qualquer. Esta é a missão de um matemático: identificar regularidades para que, no meio da desordem e de um volume considerável de informação, se possa extrair algum tipo de invariância que conduza à caracterização das propriedades comuns aos diferentes casos analisados. (...) Dedicamos este artigo à caracterização de outro padrão bidimensional, desta vez proveniente do artesanato: analisamos as simetrias de uma toalha feita em renda tradicional ou croché de arte, com diferentes tipos de pontos (laça, amora, escadinha, ponto de serrilha, entre outros). A foto analisada foi enviada pela Dona Maria Freitas, da freguesia de Castelo Branco, que agradeço pela disponibilidade e simpatia. A peça foi executada pela sua mãe, Filomena Correia, há 8 anos quando tinha 80 anos! (...) Verificamos, de seguida, que a toalha apresenta os quatro tipos possíveis de simetria. (...) Destaca-se outro aspeto relevante que pode facilmente ser comprovado com recurso a um espelho: por cada centro de ordem 4 passam quatro eixos de simetria (representados por linhas contínuas em C) e por cada centro de ordem 2 passam dois eixos de simetria. Ficam, assim, caracterizadas as simetrias de reflexão. Resta identificar as simetrias de reflexão deslizante. Ora, estas estão associadas aos eixos de deslocamento representados a tracejado em C: por cada centro de rotação de ordem 2 passam dois eixos de deslocamento. Identifica-se em D um desses eixos de deslocamento: há uma reflexão seguida de uma translação de vetor paralelo ao eixo. Ao fixar o olhar ao longo do eixo de deslocamento, é possível verificar que os losangos alternam sucessivamente de posição, algo semelhante às marcas das nossas pegadas quando caminhamos descalços na areia. (...)
Resumo:
As festas em honra do Divino Espírito Santo ocorrem nesta época do ano, um pouco por toda parte, nas 9 ilhas dos Açores e também além-fronteiras, nas nossas comunidades de emigrantes. [...] Em termos gastronómicos, marcam presença obrigatória nestas festividades as tradicionais sopas, a carne assada, a massa sovada e o arroz doce. [...] Aproveitou-se a oportunidade para decorar as travessas de arroz doce do Império da Trindade da Atalaia de uma forma diferente, construindo os sete tipos de frisos com canela. O primeiro friso (A) apresenta simetrias de translação numa única direção, propriedade comum a todos os frisos, o que se traduz na repetição de um motivo ao longo de uma faixa. O espaçamento entre cópias consecutivas do motivo é sempre o mesmo e é determinado pelo vetor de módulo mínimo associado às simetrias de translação. Este friso não apresenta outras simetrias. [...] Os frisos com meia-volta foram escolhidos de forma a homenagear as três cidades açorianas com mais tipos de frisos. Temos o passeio da Rua Dr. Aristides da Mota, em Ponta Delgada (F); o passeio da Praça da República, na Horta (H); e uma faixa do passeio da Rua da Sé, em Angra do Heroísmo (J). [...] É importante valorizar as nossas tradições e o que temos de bom. Se cruzarmos tudo isso com iniciativas que promovam a ciência, podemos potenciar o turismo em vertentes diversificadas. O turismo matemático já é uma realidade em várias partes do mundo. Temos um grande património em calçada. Por que não reproduzir os frisos da nossa calçada em diferentes suportes, desde a doçaria tradicional a diversas formas de artesanato?
Resumo:
O nosso objetivo centra-se na problematização de alguns aspetos relacionados com a dimensão ética do projeto de Filosofia para Crianças iniciado por Matthew Lipman e Ann Sharp nas décadas de 70 e 80 do século XX. Lipman começou por preocupar-se em promover um programa que preparasse as crianças para lidarem com discursos ambíguos, como sejam a publicidade e a propaganda, centrando os seus esforços iniciais na razoabilidade (reasonableness), isto é, numa proposta educativa que promovesse seres humanos mais "razoáveis" ou capazes de raciocinar bem. A comunidade de investigação filosófica (community of philosophical inquiry) designa um grupo de pessoas envolvidas num processo de pensamento filosófico enquanto conjunto de processos deliberativos e colaborativos em que os participantes transformam as suas opiniões em juízos fundamentados e as suas discussões em diálogos, articulando-se de forma autocorretiva. Os trabalhos de M. Lipman e A. Sharp encontraram ecos no critical thinking movement a que autores como os psicólogos R. Ennis e R. Paul concederam grande visibilidade na segunda metade do século XX. Aliás, a incidência no pensamento crítico formal materializa-se com a publicação de Harry Stottlemeier's discovery, a primeira história do currículo de Lipman e Sharp para trabalhar filosoficamente com as crianças, texto especificamente orientado para a aquisição de competências lógicas básicas, privilegiando a perspetiva da aquisição e desenvolvimento de capacidades analíticas e cognitivas. Todavia, os trabalhos de Lipman e Sharp não se resumem a uma abordagem formal do pensamento lógico e destacam-se de outras propostas pedagógicas de estrito enriquecimento cognitivo pelas suas dimensões ética, estética, política e, até, existencial. Podendo ser concebido como um programa de largo espectro, às competências críticas juntam-se outras valências do designado pensamento de multidimensional, nomeadamente os pensamentos criativo, valorativo ou de cuidado (caring). Acresce que a prática filosófica com as crianças extrapola os limites da sala de aula: tal como uma pedra atirada ao rio, as comunidades de investigação filosófica assemelham-se a círculos concêntricos que, quando em funcionamento, irradiam para esferas mais largas e integradoras, o que lhes confere uma importante dimensão ética, social, política e, até, civilizacional. O nosso contributo na presente reflexão prende-se com a vertente ética do programa de Filosofia para Crianças, entendida nas suas expressões individual e coletiva, isto é, enquanto ressoa na conduta pessoal de cada membro da comunidade, bem como no plano social do seu compromisso com o grupo. Procuraremos pensar algumas linhas de articulação entre as dimensões ética e cognitiva do programa de Filosofia para Crianças, lançando a questão: o que significa ser eticamente crítico?
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
XI Colóquio sobre Questões Curriculares / VII Colóquio Luso-Brasileiro & I Colóquio Luso-Afro-Brasileiro sobre Questões Curriculares. Complexo pedagógico I, Campus de Gualtar - Universidade do Minho, Braga - Portugal, entre quinta-feira, 18-09-2014 e sábado, 20-09-2014.
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)
Resumo:
Continuamos à conversa com a Dona Isaura Rodrigues. (...) Analisamos, de seguida, as simetrias de alguns bordados de palha de trigo sobre tule desenvolvidos pela Dona Isaura Rodrigues, que agradecemos pela disponibilidade e simpatia. Começamos pela echarpe das imagens 1 e 2. Identificamos uma simetria de rotação de 180 graus, também conhecida por meia-volta. Isto significa que, se virarmos a echarpe “de pernas ao ar”, a sua configuração não se altera. Este tipo de simetria é muito comum, não só em peças de artesanato, como também nas calçadas e varandas. (...) Por não apresentar simetrias de reflexão, a echarpe das imagens 1 e 2 tem grupo de simetria C2. (...) O espaçamento entre cópias consecutivas dos motivos é sempre o mesmo. Este tipo de propriedade é comum aos frisos que encontramos nas varandas e nos passeios em calçada, que se caracterizam pela presença de simetrias de translação numa única direção. E esta é uma das ferramentas matemáticas mais importantes, constituindo, muitas vezes, um verdadeiro desafio: a capacidade de encontrar propriedades comuns em coisas que, à primeira vista, não têm qualquer ligação. Não fosse a Matemática a Ciência dos Padrões!
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
Benjamin Franklin (1706-1790) foi jornalista, cientista, inventor, homem de estado e diplomata. (...) Benjamin Franklin era um entusiasta de quadrados mágicos. Chegou mesmo a criar os seus próprios quadrados. O mais conhecido é o quadrado 8 por 8 apresentado na imagem. Numa carta publicada em 1769, Franklin refere: "Na minha juventude, divertia-me a construir quadrados mágicos, de modo a que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais principais fosse sempre a mesma; com o passar do tempo, conseguia criar quadrados mágicos, de tamanho razoável, tão depressa quanto conseguia escrever os números nas suas linhas e colunas; mas, por não estar totalmente satisfeito com estes quadrados, que eram demasiado fáceis, impus a mim mesmo o desafio de construir outro tipo de quadrados mágicos, que apresentassem propriedades mais ricas e que constituíssem, assim, um maior estímulo à curiosidade." Em relação ao quadrado mágico da imagem, são utilizados todos os números naturais, do 1 ao 8x8=64, uma e uma só vez. Além disso, a soma dos números de cada linha e de cada coluna é sempre igual a 260, a constante mágica. Existem muitas outras formas de obter o valor 260 (...)
Resumo:
"Os nomogramas são tabelas gráficas graduadas planas que servem para representar equações algébricas com duas ou mais variáveis, de tal modo que o cálculo das suas soluções se reduz a uma simples leitura." Os nomogramas utilizam um sistema de pontos e linhas, retas e curvas, para resolverem equações.
Resumo:
(...). Os bordados sobre tecidos desfiados são conhecidos desde longa data em quase todos os países da Europa. O trabalho em crivo tem alguma tradição nos Açores. (...). Foi nossa intenção explorar as simetrias de alguns destes trabalhos. Neste contexto, estivemos à conversa com a Dona Salomé Vieira, artesã açoriana e formadora dos bordados de crivo. (...) O que distingue os quatro exemplos analisados até ao momento? No primeiro exemplo (Fig. 4), a configuração da peça é sempre a mesma independentemente do lado da mesa em que nos encontramos. Já em relação aos três últimos exemplos (Fig. 5, Fig. 6 e Fig. 7), isto só acontece para um lado da mesa e o seu oposto. Isto significa que se duas pessoas se posicionarem em lados consecutivos da mesa, de frente para o naperon, vão observar configurações diferentes da peça. Todas as quatro peças apresentadas são exemplos de rosáceas. Mas se analisarmos apenas a uma das quatro faixas laterais do naperon da Fig. 7, passamos a observar um friso, que se caracteriza pela presença de simetrias de translação numa única direção: conseguimos observar um motivo que se repete sucessivamente ao longo de cada faixa, sempre com o mesmo espaçamento entre cópias consecutivas desse motivo. Este friso apresenta também simetrias de reflexão ou de espelho com eixo com direção perpendicular ao friso. Este tipo de simetria é comum em bordados de crivo. (...)