13 resultados para concurso mágico

em Universidade dos Açores - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benjamin Franklin (1706-1790) foi jornalista, cientista, inventor, homem de estado e diplomata. (...) Benjamin Franklin era um entusiasta de quadrados mágicos. Chegou mesmo a criar os seus próprios quadrados. O mais conhecido é o quadrado 8 por 8 apresentado na imagem. Numa carta publicada em 1769, Franklin refere: "Na minha juventude, divertia-me a construir quadrados mágicos, de modo a que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais principais fosse sempre a mesma; com o passar do tempo, conseguia criar quadrados mágicos, de tamanho razoável, tão depressa quanto conseguia escrever os números nas suas linhas e colunas; mas, por não estar totalmente satisfeito com estes quadrados, que eram demasiado fáceis, impus a mim mesmo o desafio de construir outro tipo de quadrados mágicos, que apresentassem propriedades mais ricas e que constituíssem, assim, um maior estímulo à curiosidade." Em relação ao quadrado mágico da imagem, são utilizados todos os números naturais, do 1 ao 8x8=64, uma e uma só vez. Além disso, a soma dos números de cada linha e de cada coluna é sempre igual a 260, a constante mágica. Existem muitas outras formas de obter o valor 260 (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Matemática (Investigação Operacional), 23 de Setembro de 2006, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuamos a analisar o trabalho em renda desenvolvido pela Dona Ana Baptista. Ao longo dos anos, esta artesã tem recebido vários prémios no âmbito do Concurso "Artesanato da Região Autónoma dos Açores", na categoria de Rendas Tradicionais (...). Quando questionada sobre o que determina a qualidade de uma peça em renda tradicional, a artesã aponta dois fatores: "1- Os pontos de um mesmo tipo devem ser todos iguais quando comparados uns com os outros; 2- Cada ponto deve ser uniforme e não apresentar qualquer tipo de irregularidade." Note-se que estes aspetos são fundamentais para conferir homogeneidade à peça e para lhe atribuir simetrias, que se caracterizam precisamente pela repetição de um motivo (em torno de um ponto do plano, numa determinada direção do plano ou em mais de uma direção). Desta forma, a sensação de beleza associada ao conceito de simetria é potenciada quando as cópias do motivo são idênticas ou praticamente idênticas. (...) Em seguida, analisamos as simetrias de algumas peças em renda tradicional desenvolvidas pela Dona Ana Baptista, que agradecemos pela disponibilidade e simpatia. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, convido o leitor a transformar-se num detetive à caça de simetrias! E desta vez o objeto da nossa atenção são as bonitas peças de tecelagem. Os tecidos obtêm-se através do entrelaçamento de fios longitudinais (fios de teia) com fios transversais (fios de trama), o que só por si já tem interesse do ponto de vista matemático. (...) Joana Dias é natural da Ilha de São Miguel e vive atualmente em Santa Maria. O seu trabalho artesanal em tecelagem, malhas e fiação de lã pode ser apreciado na Web. (...) Joana acrescenta: "Como designer tenho um fascínio pelo padrão, pela repetição de um motivo, pela desconstrução e pela sensação de desenhar e preencher um espaço sem limites, sem princípio nem fim. A repetição é infinita embora vejamos apenas uma parte. A arte da tecelagem representa este momento mágico de construção do padrão dentro dos limites do tear." Reforço o facto de este aspeto referido pela Joana ser de extrema importância para a compreensão intuitiva do conceito de simetria. Aqui está um exemplo claro de como é importante estabelecer pontes entre a Escola e a Sociedade, com enfoque nas nossas tradições. E por que não trazer à Escola artesãos açorianos para dar um testemunho das diferentes formas de artesanato tão características da nossa região? Muitos alunos certamente adorariam fazer as suas próprias peças orientados por quem sabe, para não falar no potencial deste tipo de atividades para a promoção de aprendizagens significativas. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na qualidade de Diretora Regional das Comunidades, fomos responsável pela redação dos artigos e coordenação da página "Comunidades", integrada no jornal Açoriano Oriental, servindo a mesma para a divulgação das atividades realizadas pela Direção Regional Das Comunidades do Governo dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na qualidade de Diretora Regional das Comunidades, fomos responsável pela redação dos artigos e coordenação da página "Comunidades", integrada no jornal Açoriano Oriental, servindo a mesma para a divulgação das atividades realizadas pela Direção Regional Das Comunidades do Governo dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na qualidade de Diretora Regional das Comunidades, fomos responsável pela redação dos artigos e coordenação da página "Comunidades", integrada no jornal Açoriano Oriental, servindo a mesma para a divulgação das atividades realizadas pela Direção Regional Das Comunidades do Governo dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na qualidade de Diretora Regional das Comunidades, fomos responsável pela redação dos artigos e coordenação da página "Comunidades Açorianas no Mundo", integrada no jornal Mundo Português, servindo a mesma para a divulgação das atividades realizadas pela Direção Regional Das Comunidades do Governo dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltamos ao tema dos quadrados mágicos. (...) Vejamos alguns exemplos curiosos. Começamos pelo Quadrado Mágico do Aniversariante (figura A). Se o leitor fizer as contas, verificará que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais do quadrado é sempre 22 (figura B). Este é, portanto, um quadrado mágico ideal para quem tem 22 anos. Contudo, a sua utilização é muito mais flexível do que à primeira vista se possa pensar. Isto porque também é possível utilizar este quadrado mágico para felicitar qualquer amigo com mais de 22 anos. Se quisermos que o quadrado da figura A tenha constante mágica igual a x, com x>22, basta adicionar a cada um dos números das quatro casas brancas o valor x-22. (...) Na figura D, apresenta-se um Quadrado Mágico Reversível. Este quadrado aparece no livro "Self-working Number Magic", de Karl Fulves, publicado em 1983. Para começar, uma observação atenta a cada linha, coluna ou diagonal do quadrado permite concluir que, em cada uma dessas filas, são utilizados os mesmos algarismos: 1, 6, 8 e 9. Um olhar ainda mais atento permite detetar duas ocorrências de cada um desses algarismos por fila. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um dos aspetos mais apelativos da Matemática reside nas múltiplas formas que temos de apreciar esta ciência. A procura incessante por padrões, sejam eles numéricos, geométricos ou de outra natureza qualquer, pode constituir uma atividade altamente motivadora. Nas últimas décadas, a Matemática Recreativa tem vindo a assumir um papel de maior destaque na sensibilização da opinião pública para a importância da Matemática através da exploração da sua vertente prática por intermédio, por exemplo, de quebra-cabeças e de jogos matemáticos. (...) Neste texto, apresentamos um intrigante puzzle geométrico. Chama-se Missing Square e foi desenvolvido em 1953 pelo mágico nova-iorquino Paul Curry. (...) Recentemente, tem circulado na Web um truque com uma tablete de chocolate, que se baseia no mesmo tipo de ilusão de ótica do Missing Square. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado, Tecnologia e Segurança Alimentar, 4 de Março de 2016, Universidade dos Açores.