26 resultados para MODELADO MATEMÁTICO
em Universidade dos Açores - Portugal
Resumo:
[...], na matemática, quando se fala de volumes, é inevitável falar de Arquimedes. Nasceu em Siracusa, uma colónia grega situada na Sicília, em 287 a.C., e foi educado em Alexandria, no Egito. É considerado o maior matemático, físico e inventor do mundo antigo. Distinguiu-se também na Astronomia, por influência de seu pai que era astrónomo, e na Mecânica. Chegou a descrever um método para determinar o centro de gravidade dos corpos geométricos, tendo esboçado os princípios da alavanca. [...].
Resumo:
No artigo "The bad and the beautiful", publicado no Finantial Times em janeiro de 2013, Edwin Heathcote realça alguns aspetos que tornam as cidades mais sedutoras e elege as oito mais belas atrações citadinas a nível mundial. O autor coloca o impacto causado pelos padrões ondulantes da calçada do Rossio (calçada do "Mar Largo"), em Lisboa, a par com outros "momentos belos" desencadeados, por exemplo, ao olhar para o grande canal de Veneza, para os apartamentos vitorianos de Nova Iorque ou para a iluminação noturna produzida pelos mercados de rua de Mongkok, em Hong Kong. Sem dúvida que vale a pena dedicar um pouco do nosso tempo a apreciar a bonita calçada portuguesa, uma verdadeira atração mundial. [...] Mas como podemos identificar simetrias no dia a dia? Neste artigo, abordaremos dois dos tipos mais comuns de simetria: a simetria de rotação e a simetria de espelho ou de reflexão. Com o intuito de exemplificar estes tipos de simetria, analisam-se duas rosáceas em calçada, localizadas no Campo de S. Francisco em Ponta Delgada [...].
Resumo:
Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 13 de Fevereiro de 2015, Universidade dos Açores.
Resumo:
Um dos aspetos mais apelativos da Matemática reside nas múltiplas formas que temos de apreciar esta ciência. A procura incessante por padrões, sejam eles numéricos, geométricos ou de outra natureza qualquer, pode constituir uma atividade altamente motivadora. Nas últimas décadas, a Matemática Recreativa tem vindo a assumir um papel de maior destaque na sensibilização da opinião pública para a importância da Matemática através da exploração da sua vertente prática por intermédio, por exemplo, de quebra-cabeças e de jogos matemáticos. (...) Neste texto, apresentamos um intrigante puzzle geométrico. Chama-se Missing Square e foi desenvolvido em 1953 pelo mágico nova-iorquino Paul Curry. (...) Recentemente, tem circulado na Web um truque com uma tablete de chocolate, que se baseia no mesmo tipo de ilusão de ótica do Missing Square. (...)
Resumo:
A resolução de problemas é um processo fundamental na aprendizagem da matemática. Neste artigo, apresenta-se uma reflexão sobre a importância deste processo matemático e de como ele pode ser conduzido de forma a estimular o raciocínio matemático através da promoção da comunicação, em contexto de sala de aula. O trabalho foi realizado na etapa final de formação de educadores e professores no contexto do pré-escolar e do primeiro ciclo do ensino básico. Em resultado das atividades realizadas, discute-se o papel da utilização de uma heurística ao longo da resolução de problemas, a importância na escolha de estratégia para a interação com os alunos, bem como o desenho intencional de materiais didáticos. A experiência enquadra-se numa abordagem qualitativa de design de experiência de ensino.
Resumo:
Entre os dias 28 e 31 do passado mês de outubro, decorreu na Universidade de Coimbra a primeira Conferência Internacional do Espaço Matemático em Língua Portuguesa (CiEMeLP 2015), que reuniu matemáticos de praticamente todos os países de língua oficial portuguesa (...) Foi muito gratificante participar neste encontro e partilhar muitas das problemáticas ligadas ao ensino e à divulgação da matemática com colegas de países como Brasil, Cabo Verde, Moçambique e Timor Leste. Foi interessante constatar que aquilo que nos une é muito superior ao que nos separa. De facto, destaca-se um grande consenso em torno de alguns aspetos essenciais ligados ao ensino da matemática. Participei neste encontro com duas comunicações. A primeira, intitulada “Pisando arte e matemática em Lisboa”, resultou de um trabalho conjunto com Jorge Nuno Silva, Carlos Pereira dos Santos e Alda Carvalho e teve como objetivo apresentar o baralho de cartas da Associação Ludus dedicado às simetrias das calçadas da cidade de Lisboa. (...) A segunda comunicação, “Cruzar fronteiras entre a matemática e a cultura: à descoberta de simetrias na calçada e no artesanato”, resultou de uma parceria com Andreia Hall, da Universidade de Aveiro. Os autores cruzam o trabalho que têm vindo a desenvolver nos últimos anos, nomeadamente o levantamento dos padrões em Calçada Portuguesa, no Arquipélago dos Açores (sites.uac.pt/rteixeira/simetrias/), com a exploração de simetrias em Patchwork e Cerâmica, no âmbito de um leque de cursos de formação para professores realizados em Aveiro. (...)
Resumo:
Neste artigo, volta a estar em destaque o trabalho desenvolvido por Miguel Gouveia, formador em calcetaria portuguesa e artística. (...) O contraste de cores das pedras da calçada proporciona uma diversidade considerável de padrões, que podem ser estudados do ponto de vista matemático. (...) De volta à Vila da Calheta, é possível apreciar outra rosácea, mesmo em frente aos paços do concelho (figura 7): identificamos dois eixos de simetria (um vertical e outro horizontal). Esta rosácea também apresenta simetria de rotação de 360/2=180 graus. Isto significa que se a "virarmos de pernas ao ar", ou seja, se a rodarmos dois ângulos retos em torno do seu centro de rotação, a sua configuração não se altera. No centro destaca-se outra rosácea, desta feita com 6 eixos de simetria. Identificamos também 6 simetrias de rotação: se rodarmos a rosácea em torno do seu centro segundo uma amplitude de 360/6=60 graus (ou de algum dos seus múltiplos), a figura obtida sobrepõe-se por completo à figura inicial. Note-se que a amplitude a utilizar depende do número de repetições do motivo, neste caso 6. Em relação a esta rosácea sextavada, Miguel refere uma curiosidade interessante: "A ideia de a implementar surgiu ao verificar que este símbolo era muito comum no mobiliário açoriano. A proposta foi recebida de bom agrado pelas autoridades camarárias." (...)
Resumo:
O termo padrão quando empregue no dia a dia pode assumir diferentes significados. Em geral, está associado à identificação de algum tipo de regularidade. A Matemática, enquanto ciência dos padrões, fornece ferramentas que permitem classificar de forma rigorosa e exaustiva os padrões que encontramos, sejam eles numéricos, geométricos ou de outra natureza qualquer. Esta é a missão de um matemático: identificar regularidades para que, no meio da desordem e de um volume considerável de informação, se possa extrair algum tipo de invariância que conduza à caracterização das propriedades comuns aos diferentes casos analisados. (...) Dedicamos este artigo à caracterização de outro padrão bidimensional, desta vez proveniente do artesanato: analisamos as simetrias de uma toalha feita em renda tradicional ou croché de arte, com diferentes tipos de pontos (laça, amora, escadinha, ponto de serrilha, entre outros). A foto analisada foi enviada pela Dona Maria Freitas, da freguesia de Castelo Branco, que agradeço pela disponibilidade e simpatia. A peça foi executada pela sua mãe, Filomena Correia, há 8 anos quando tinha 80 anos! (...) Verificamos, de seguida, que a toalha apresenta os quatro tipos possíveis de simetria. (...) Destaca-se outro aspeto relevante que pode facilmente ser comprovado com recurso a um espelho: por cada centro de ordem 4 passam quatro eixos de simetria (representados por linhas contínuas em C) e por cada centro de ordem 2 passam dois eixos de simetria. Ficam, assim, caracterizadas as simetrias de reflexão. Resta identificar as simetrias de reflexão deslizante. Ora, estas estão associadas aos eixos de deslocamento representados a tracejado em C: por cada centro de rotação de ordem 2 passam dois eixos de deslocamento. Identifica-se em D um desses eixos de deslocamento: há uma reflexão seguida de uma translação de vetor paralelo ao eixo. Ao fixar o olhar ao longo do eixo de deslocamento, é possível verificar que os losangos alternam sucessivamente de posição, algo semelhante às marcas das nossas pegadas quando caminhamos descalços na areia. (...)
Resumo:
Na sua obra "Unpopular Essays", de 1950, o conhecido matemático e filósofo Bertrand Russel refere que o ser humano é um animal crédulo que precisa acreditar em algo e que, na ausência de uma boa crença, ele fica satisfeito com a má. Na cultura ocidental, o 13 é um dos números com mais impacto no universo das superstições e das crenças populares. Há mesmo quem leve muito a sério a suposta influência negativa deste número e que, por isso mesmo, o evite a todo o custo. (...) Algumas companhias aéreas, como a Air France e a Lufthansa, ainda omitem a fila 13 nos seus aviões. Em algumas partes do mundo, é raro conseguir encontrar um Hotel que não tenha renumerado o seu décimo terceiro andar (substituindo o 13 pelo 14 ou por 12A). É o caso, por exemplo, de Nova Iorque. O curioso é que ainda antes dos prédios terem 13 andares, já se saltava do 12 para o 14 na numeração dos quartos. Mas há quem vá mais longe, recusando-se a pernoitar, por exemplo, num quarto 454, por entender que esse número está a camuflar o 13 (note-se que 4+5+4=13). Stephen King, conhecido autor de contos de horror fantástico e de ficção, revelou que, quando está a ler um livro, nunca pára nas páginas 94, 193, 283 e em todas as outras em que a soma dos algarismos seja 13. Os jogadores de críquete da Austrália costumam chamar ao 87 "o número do diabo", já que 87=100-13. Há também quem evite morar numa casa com o número 13 ou que não queira dar um nome ao seu filho com exatamente 13 letras. Outro aspeto referido com frequência tem a ver com o facto do décimo terceiro Arcano Maior do Tarot ser a carta da morte (...) Alguns acontecimentos históricos ajudaram a alimentar a fobia ao 13. Lançada no dia 11 de abril de 1970, às 13h13, a Apollo 13 consistiu na terceira missão tripulada do Projeto Apollo com destino à Lua (note-se que, se adicionarmos os algarismos de 11/04/70, obtém-se 13). Devido a um acidente causado por uma explosão num dos módulos, não foi possível concluir a missão. Mesmo assim, os tripulantes conseguiram regressar com a nave à Terra, após seis dias no espaço. (...)
Resumo:
As festas em honra do Divino Espírito Santo ocorrem nesta época do ano, um pouco por toda parte, nas 9 ilhas dos Açores e também além-fronteiras, nas nossas comunidades de emigrantes. [...] Em termos gastronómicos, marcam presença obrigatória nestas festividades as tradicionais sopas, a carne assada, a massa sovada e o arroz doce. [...] Aproveitou-se a oportunidade para decorar as travessas de arroz doce do Império da Trindade da Atalaia de uma forma diferente, construindo os sete tipos de frisos com canela. O primeiro friso (A) apresenta simetrias de translação numa única direção, propriedade comum a todos os frisos, o que se traduz na repetição de um motivo ao longo de uma faixa. O espaçamento entre cópias consecutivas do motivo é sempre o mesmo e é determinado pelo vetor de módulo mínimo associado às simetrias de translação. Este friso não apresenta outras simetrias. [...] Os frisos com meia-volta foram escolhidos de forma a homenagear as três cidades açorianas com mais tipos de frisos. Temos o passeio da Rua Dr. Aristides da Mota, em Ponta Delgada (F); o passeio da Praça da República, na Horta (H); e uma faixa do passeio da Rua da Sé, em Angra do Heroísmo (J). [...] É importante valorizar as nossas tradições e o que temos de bom. Se cruzarmos tudo isso com iniciativas que promovam a ciência, podemos potenciar o turismo em vertentes diversificadas. O turismo matemático já é uma realidade em várias partes do mundo. Temos um grande património em calçada. Por que não reproduzir os frisos da nossa calçada em diferentes suportes, desde a doçaria tradicional a diversas formas de artesanato?
Resumo:
Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 1 de Julho de 2014, Universidade dos Açores.
Resumo:
Neste artigo, divulgamos um feito importante para a valorização do nosso património em calçada, com aplicações no ensino e com potencial em termos turísticos. No passado mês de junho, Angra do Heroísmo alcançou o estatuto de "Cidade dos Sete Frisos", por passar a contar nas suas calçadas com todos os sete tipos possíveis de frisos, seguindo assim as pisadas da cidade de Lisboa. É a primeira cidade açoriana a alcançar este feito e, muito provavelmente, a segunda do país, depois de Lisboa. [...] Passamos à análise de um exemplo curioso do ponto de vista matemático. À semelhança do friso da Avenida Tenente Coronel José Agostinho (C), também o friso da Rua da Queimada (E) apresenta simetrias de reflexão deslizante. Contudo, este último exemplo já não tem simetrias de meia-volta. Se o leitor se concentrar na posição dos triângulos e dos segmentos de reta do friso da Rua da Queimada (E) e o imaginar de "pernas ao ar", verificará que a configuração daí resultante é diferente da original. Obtém-se, portanto, um novo friso, com uma disposição diferente dos triângulos e dos segmentos de reta, mantendo as simetrias de reflexão deslizante. Curiosamente, se recorrermos a uma mesma posição de observação, este novo friso marca presença um pouco mais à frente, na Rua Madre de Deus. Estamos, portanto, a falar de dois frisos diferentes, mas do mesmo tipo, pois ambos apresentam apenas simetrias de translação e de reflexão deslizante. São os únicos frisos deste tipo em Angra do Heroísmo. [...] Em suma, "Angra, a Cidade dos Sete Frisos" é um feito que: (1) permite valorizar o nosso património em calçada; (2) pode ser utilizado pelos professores para visitas de estudo (pois o tema das simetrias consta dos programas em vigor), estabelecendo-se conexões da Matemática com a vida do dia a dia; (3) permite explorar uma vertente do turismo em crescimento, o turismo matemático. E a propósito do turismo matemático, este marco constitui uma excelente oportunidade para se elaborar um roteiro completo com exemplos dos sete tipos de frisos em calçada de Angra e para se promover várias iniciativas como exposições e publicações. E por que não reproduzir os sete frisos em diferentes suportes, desde a nossa gastronomia tradicional a diversas formas de artesanato?
Resumo:
O conceito de padrão, quando empregue no dia a dia, pode assumir diferentes significados. Em geral, está associado à identificação de algum tipo de regularidade. A Matemática, enquanto "ciência dos padrões", fornece ferramentas que permitem classificar de forma rigorosa e exaustiva os padrões que encontramos, sejam eles numéricos, geométricos ou de outra natureza qualquer. Esta é a missão de um matemático: identificar regularidades para que, no meio da desordem e de um volume considerável de informação, se possa extrair algum tipo de invariância que conduza à caracterização das propriedades comuns aos diferentes casos analisados. Este aspeto estrutural a todo o edifício matemático deve ser tido em conta no Ensino da Matemática. Aprender Matemática requer esforço e dedicação. O sucesso nesta disciplina depende do interesse do aluno em despender o esforço necessário e da dedicação com que o faz. Mas como podemos incentivar os nossos jovens a realizar esta caminhada? A verdade é que o ser humano sente necessidade de perceber o propósito daquilo em que está envolvido e é, precisamente, o acreditar nesse propósito que lhe confere muitas vezes entusiasmo e determinação para prosseguir de modo a alcançar os objetivos delineados. É, por isso, fundamental que, desde tenra idade, as crianças percebam qual o papel da Matemática e como, enquanto ciência dos padrões, esta pode ser preponderante na vida prática do quotidiano, na sistematização da informação e numa melhor perceção daquilo que nos rodeia. Tal deve ser tido em conta desde o Pré-Escolar e 1.º Ciclo do Ensino Básico, uma vez que as representações que os jovens desenvolvem da Matemática no decorrer desses anos são determinantes para a relação que assumirão com esta área do saber nos restantes níveis de ensino e ao longo de toda a sua vida. Neste âmbito, surgiu a ideia de desenvolver um caderno de atividades para o Pré-Escolar e 1.º Ciclo do Ensino Básico, que se espera ser o primeiro de uma série de materiais pedagógicos de apoio, estruturados de acordo com os pressupostos estabelecidos nos parágrafos anteriores. [...].
Resumo:
Neste artigo, convido o leitor a transformar-se num detetive à caça de simetrias! E desta vez o objeto da nossa atenção são as bonitas peças de tecelagem. Os tecidos obtêm-se através do entrelaçamento de fios longitudinais (fios de teia) com fios transversais (fios de trama), o que só por si já tem interesse do ponto de vista matemático. (...) Joana Dias é natural da Ilha de São Miguel e vive atualmente em Santa Maria. O seu trabalho artesanal em tecelagem, malhas e fiação de lã pode ser apreciado na Web. (...) Joana acrescenta: "Como designer tenho um fascínio pelo padrão, pela repetição de um motivo, pela desconstrução e pela sensação de desenhar e preencher um espaço sem limites, sem princípio nem fim. A repetição é infinita embora vejamos apenas uma parte. A arte da tecelagem representa este momento mágico de construção do padrão dentro dos limites do tear." Reforço o facto de este aspeto referido pela Joana ser de extrema importância para a compreensão intuitiva do conceito de simetria. Aqui está um exemplo claro de como é importante estabelecer pontes entre a Escola e a Sociedade, com enfoque nas nossas tradições. E por que não trazer à Escola artesãos açorianos para dar um testemunho das diferentes formas de artesanato tão características da nossa região? Muitos alunos certamente adorariam fazer as suas próprias peças orientados por quem sabe, para não falar no potencial deste tipo de atividades para a promoção de aprendizagens significativas. (...)
Resumo:
Neste artigo apresenta-se um "stand up" matemático com alguns relatos fictícios e reais.