21 resultados para Grupos de padrões e pavimentações

em Universidade dos Açores - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de Mestrado, Matemática para Professores, 3 de Abril de 2014, Universidade dos Açores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retomamos a nossa viagem à descoberta de padrões pelas calçadas da Ilha de S. Miguel. A próxima paragem é no Miradouro da Ponta do Escalvado, localizado no lugar da Várzea, freguesia dos Ginetes, concelho de Ponta Delgada. [...] Mas qual o particular interesse da calçada do Miradouro da Ponta do Escalvado? Mostramos, em seguida, que este é um exemplo de um passeio onde podemos encontrar, em simultâneo, os quatro tipos possíveis de simetria... o que nem sempre acontece. [...] Existem também outros tipos de simetria, aparentemente menos percetíveis. Na imagem 3, ilustra-se o conceito de simetria de rotação. Para tal, temos que fixar um ponto: o centro de rotação. Basicamente, a ideia é a de rodar a figura em torno do ponto fixo segundo um ângulo com uma determinada amplitude. Respeita-se, em geral, o sentido contrário aos ponteiros do relógio, designado por sentido anti-horário ou sentido positivo. Se, ao rodarmos a figura segundo uma amplitude inferior a 360º, ela coincidir com a sua posição inicial, dizemos que tem uma simetria de rotação: a figura inicial e a que resultou desse movimento ficam completamente sobrepostas, não se conseguem distinguir. Dizemos que o movimento em causa fixou globalmente a figura ou que a deixou invariante. [...].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No artigo "The bad and the beautiful", publicado no Finantial Times em janeiro de 2013, Edwin Heathcote realça alguns aspetos que tornam as cidades mais sedutoras e elege as oito mais belas atrações citadinas a nível mundial. O autor coloca o impacto causado pelos padrões ondulantes da calçada do Rossio (calçada do "Mar Largo"), em Lisboa, a par com outros "momentos belos" desencadeados, por exemplo, ao olhar para o grande canal de Veneza, para os apartamentos vitorianos de Nova Iorque ou para a iluminação noturna produzida pelos mercados de rua de Mongkok, em Hong Kong. Sem dúvida que vale a pena dedicar um pouco do nosso tempo a apreciar a bonita calçada portuguesa, uma verdadeira atração mundial. [...] Mas como podemos identificar simetrias no dia a dia? Neste artigo, abordaremos dois dos tipos mais comuns de simetria: a simetria de rotação e a simetria de espelho ou de reflexão. Com o intuito de exemplificar estes tipos de simetria, analisam-se duas rosáceas em calçada, localizadas no Campo de S. Francisco em Ponta Delgada [...].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(...). Os bordados sobre tecidos desfiados são conhecidos desde longa data em quase todos os países da Europa. O trabalho em crivo tem alguma tradição nos Açores. (...). Foi nossa intenção explorar as simetrias de alguns destes trabalhos. Neste contexto, estivemos à conversa com a Dona Salomé Vieira, artesã açoriana e formadora dos bordados de crivo. (...) O que distingue os quatro exemplos analisados até ao momento? No primeiro exemplo (Fig. 4), a configuração da peça é sempre a mesma independentemente do lado da mesa em que nos encontramos. Já em relação aos três últimos exemplos (Fig. 5, Fig. 6 e Fig. 7), isto só acontece para um lado da mesa e o seu oposto. Isto significa que se duas pessoas se posicionarem em lados consecutivos da mesa, de frente para o naperon, vão observar configurações diferentes da peça. Todas as quatro peças apresentadas são exemplos de rosáceas. Mas se analisarmos apenas a uma das quatro faixas laterais do naperon da Fig. 7, passamos a observar um friso, que se caracteriza pela presença de simetrias de translação numa única direção: conseguimos observar um motivo que se repete sucessivamente ao longo de cada faixa, sempre com o mesmo espaçamento entre cópias consecutivas desse motivo. Este friso apresenta também simetrias de reflexão ou de espelho com eixo com direção perpendicular ao friso. Este tipo de simetria é comum em bordados de crivo. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A freguesia da Matriz, da cidade da Horta, assinalou no passado dia 8 de março de 2016 mais um Dia da Freguesia, data que marca também o nascimento de António José de Ávila, mais tarde conhecido por Duque D’Ávila e Bolama. A sessão solene desta celebração decorreu pelas 20h30 na Sociedade Amor da Pátria. Foi proferida a comunicação "Arte com Matemática: Uma análise dos padrões do artesanato faialense", que dediquei à arte de recortar papel da Dona Maria de Lourdes Pereira, às rendas tradicionais da Dona Ana Baptista, aos bordados de palha de trigo sobre tule da Dona Isaura Rodrigues e aos bordados de crivo da Dona Salomé Vieira. (...) Neste artigo, selecionou-se uma peça de cada artesã para estudar as suas simetrias. Os exemplos escolhidos mostram como pode ser rica a análise matemática das diferentes formas de artesanato. Para além de se poderem analisar as peças como um todo, muitas vezes tem interesse explorar diferentes zonas de uma mesma peça. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(...) Neste breve artigo, analisamos as simetrias de alguns tapetes decorativos construídos nos últimos anos. Ao olhar com atenção para os tapetes, encontramos com frequência rosáceas – figuras em geral circulares, tipo a rosa dos ventos, que apresentam simetrias de rotação e, em alguns casos, simetrias de reflexão (simetrias de espelho). (...) Se pensarmos na repetição dos motivos ao longo dos tapetes, do ponto de vista matemático, passamos a ter frisos. Existem 7 tipos de frisos, ou seja, 7 maneiras diferentes de repetir um determinado motivo ao longo de uma faixa recorrendo aos diferentes tipos de simetria. Em seguida, caracterizamos as simetrias do tipo de friso mais comum nos tapetes da Procissão do Senhor Santo Cristo (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prosseguimos a nossa viagem de descoberta de padrões nas calçadas dos Açores. Os padrões que encontramos no dia a dia podem ser classificados de acordo com as simetrias que apresentam. (...) Neste artigo, centramos a nossa atenção na classificação de figuras que apresentam simetrias de rotação e, em alguns casos, simetrias de reflexão. Essas figuras chamam-se rosáceas. (...) Passamos a analisar alguns exemplos de rosáceas em calçada da ilha Terceira. Começamos por uma borboleta com um eixo de simetria vertical e, portanto, com grupo de simetria D1, que pode ser apreciada no Jardim Duque da Terceira, em Angra do Heroísmo. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo, volta a estar em destaque o trabalho desenvolvido por Miguel Gouveia, formador em calcetaria portuguesa e artística. (...) O contraste de cores das pedras da calçada proporciona uma diversidade considerável de padrões, que podem ser estudados do ponto de vista matemático. (...) De volta à Vila da Calheta, é possível apreciar outra rosácea, mesmo em frente aos paços do concelho (figura 7): identificamos dois eixos de simetria (um vertical e outro horizontal). Esta rosácea também apresenta simetria de rotação de 360/2=180 graus. Isto significa que se a "virarmos de pernas ao ar", ou seja, se a rodarmos dois ângulos retos em torno do seu centro de rotação, a sua configuração não se altera. No centro destaca-se outra rosácea, desta feita com 6 eixos de simetria. Identificamos também 6 simetrias de rotação: se rodarmos a rosácea em torno do seu centro segundo uma amplitude de 360/6=60 graus (ou de algum dos seus múltiplos), a figura obtida sobrepõe-se por completo à figura inicial. Note-se que a amplitude a utilizar depende do número de repetições do motivo, neste caso 6. Em relação a esta rosácea sextavada, Miguel refere uma curiosidade interessante: "A ideia de a implementar surgiu ao verificar que este símbolo era muito comum no mobiliário açoriano. A proposta foi recebida de bom agrado pelas autoridades camarárias." (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Integrados dos Oceanos, 20 de Março de 2014, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O termo padrão quando empregue no dia a dia pode assumir diferentes significados. Em geral, está associado à identificação de algum tipo de regularidade. A Matemática, enquanto ciência dos padrões, fornece ferramentas que permitem classificar de forma rigorosa e exaustiva os padrões que encontramos, sejam eles numéricos, geométricos ou de outra natureza qualquer. Esta é a missão de um matemático: identificar regularidades para que, no meio da desordem e de um volume considerável de informação, se possa extrair algum tipo de invariância que conduza à caracterização das propriedades comuns aos diferentes casos analisados. (...) Dedicamos este artigo à caracterização de outro padrão bidimensional, desta vez proveniente do artesanato: analisamos as simetrias de uma toalha feita em renda tradicional ou croché de arte, com diferentes tipos de pontos (laça, amora, escadinha, ponto de serrilha, entre outros). A foto analisada foi enviada pela Dona Maria Freitas, da freguesia de Castelo Branco, que agradeço pela disponibilidade e simpatia. A peça foi executada pela sua mãe, Filomena Correia, há 8 anos quando tinha 80 anos! (...) Verificamos, de seguida, que a toalha apresenta os quatro tipos possíveis de simetria. (...) Destaca-se outro aspeto relevante que pode facilmente ser comprovado com recurso a um espelho: por cada centro de ordem 4 passam quatro eixos de simetria (representados por linhas contínuas em C) e por cada centro de ordem 2 passam dois eixos de simetria. Ficam, assim, caracterizadas as simetrias de reflexão. Resta identificar as simetrias de reflexão deslizante. Ora, estas estão associadas aos eixos de deslocamento representados a tracejado em C: por cada centro de rotação de ordem 2 passam dois eixos de deslocamento. Identifica-se em D um desses eixos de deslocamento: há uma reflexão seguida de uma translação de vetor paralelo ao eixo. Ao fixar o olhar ao longo do eixo de deslocamento, é possível verificar que os losangos alternam sucessivamente de posição, algo semelhante às marcas das nossas pegadas quando caminhamos descalços na areia. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 27 de Junho de 2014, Universidade dos Açores (Relatório de Estágio).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conceito de padrão, quando empregue no dia a dia, pode assumir diferentes significados. Em geral, está associado à identificação de algum tipo de regularidade. A Matemática, enquanto "ciência dos padrões", fornece ferramentas que permitem classificar de forma rigorosa e exaustiva os padrões que encontramos, sejam eles numéricos, geométricos ou de outra natureza qualquer. Esta é a missão de um matemático: identificar regularidades para que, no meio da desordem e de um volume considerável de informação, se possa extrair algum tipo de invariância que conduza à caracterização das propriedades comuns aos diferentes casos analisados. Este aspeto estrutural a todo o edifício matemático deve ser tido em conta no Ensino da Matemática. Aprender Matemática requer esforço e dedicação. O sucesso nesta disciplina depende do interesse do aluno em despender o esforço necessário e da dedicação com que o faz. Mas como podemos incentivar os nossos jovens a realizar esta caminhada? A verdade é que o ser humano sente necessidade de perceber o propósito daquilo em que está envolvido e é, precisamente, o acreditar nesse propósito que lhe confere muitas vezes entusiasmo e determinação para prosseguir de modo a alcançar os objetivos delineados. É, por isso, fundamental que, desde tenra idade, as crianças percebam qual o papel da Matemática e como, enquanto ciência dos padrões, esta pode ser preponderante na vida prática do quotidiano, na sistematização da informação e numa melhor perceção daquilo que nos rodeia. Tal deve ser tido em conta desde o Pré-Escolar e 1.º Ciclo do Ensino Básico, uma vez que as representações que os jovens desenvolvem da Matemática no decorrer desses anos são determinantes para a relação que assumirão com esta área do saber nos restantes níveis de ensino e ao longo de toda a sua vida. Neste âmbito, surgiu a ideia de desenvolver um caderno de atividades para o Pré-Escolar e 1.º Ciclo do Ensino Básico, que se espera ser o primeiro de uma série de materiais pedagógicos de apoio, estruturados de acordo com os pressupostos estabelecidos nos parágrafos anteriores. [...].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado, Psicologia da Educação (Contextos Educativos), 2014, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuamos a analisar o trabalho em renda desenvolvido pela Dona Ana Baptista. Ao longo dos anos, esta artesã tem recebido vários prémios no âmbito do Concurso "Artesanato da Região Autónoma dos Açores", na categoria de Rendas Tradicionais (...). Quando questionada sobre o que determina a qualidade de uma peça em renda tradicional, a artesã aponta dois fatores: "1- Os pontos de um mesmo tipo devem ser todos iguais quando comparados uns com os outros; 2- Cada ponto deve ser uniforme e não apresentar qualquer tipo de irregularidade." Note-se que estes aspetos são fundamentais para conferir homogeneidade à peça e para lhe atribuir simetrias, que se caracterizam precisamente pela repetição de um motivo (em torno de um ponto do plano, numa determinada direção do plano ou em mais de uma direção). Desta forma, a sensação de beleza associada ao conceito de simetria é potenciada quando as cópias do motivo são idênticas ou praticamente idênticas. (...) Em seguida, analisamos as simetrias de algumas peças em renda tradicional desenvolvidas pela Dona Ana Baptista, que agradecemos pela disponibilidade e simpatia. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuamos à conversa com a Dona Isaura Rodrigues. (...) Analisamos, de seguida, as simetrias de alguns bordados de palha de trigo sobre tule desenvolvidos pela Dona Isaura Rodrigues, que agradecemos pela disponibilidade e simpatia. Começamos pela echarpe das imagens 1 e 2. Identificamos uma simetria de rotação de 180 graus, também conhecida por meia-volta. Isto significa que, se virarmos a echarpe “de pernas ao ar”, a sua configuração não se altera. Este tipo de simetria é muito comum, não só em peças de artesanato, como também nas calçadas e varandas. (...) Por não apresentar simetrias de reflexão, a echarpe das imagens 1 e 2 tem grupo de simetria C2. (...) O espaçamento entre cópias consecutivas dos motivos é sempre o mesmo. Este tipo de propriedade é comum aos frisos que encontramos nas varandas e nos passeios em calçada, que se caracterizam pela presença de simetrias de translação numa única direção. E esta é uma das ferramentas matemáticas mais importantes, constituindo, muitas vezes, um verdadeiro desafio: a capacidade de encontrar propriedades comuns em coisas que, à primeira vista, não têm qualquer ligação. Não fosse a Matemática a Ciência dos Padrões!